MicroRNAs recruit eIF4E2 to repress translation of target mRNAs
Shaohong Chen, Guangxia Gao
MicroRNAs recruit eIF4E2 to repress translation of target mRNAs
MicroRNAs (miRNAs) recruit the RNA-induced silencing complex (RISC) to repress the translation of target mRNAs. While the 5′ 7-methylguanosine cap of target mRNAs has been well known to be important for miRNA repression, the underlying mechanism is not clear. Here we show that TNRC6A interacts with eIF4E2, a homologue of eIF4E that can bind to the cap but cannot interact with eIF4G to initiate translation, to inhibit the translation of target mRNAs. Downregulation of eIF4E2 relieved miRNA repression of reporter expression. Moreover, eIF4E2 downregulation increased the protein levels of endogenous IMP1, PTEN and PDCD4, whose expression are repressed by endogenous miRNAs. We further provide evidence showing that miRNA enhances eIF4E2 association with the target mRNA. We propose that miRNAs recruit eIF4E2 to compete with eIF4E to repress mRNA translation.
microRNAs / translation repression / 5′ cap / eIF4E2 / TNRC6A
[1] |
AsanganiIA, RasheedSA, NikolovaDA, LeupoldJH, ColburnNH, PostS, AllgayerH (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer.Oncogene27(15):2128–2136
CrossRef
Google scholar
|
[2] |
BolandA, TritschlerF, HeimstadtS, IzaurraldeE, WeichenriederO (2010) Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein.Embo Reports11(7):522–527
CrossRef
Google scholar
|
[3] |
BoyerinasB, ParkSM, ShomronN, HedegaardMM, VintherJ, AndersenJS, FeigC, XuJ, BurgeCB, PeterME (2008) Identification of let-7-regulated oncofetal genes.Cancer Res68 (8):2587–2591
CrossRef
Google scholar
|
[4] |
ChapatC, JafarnejadSM, Matta-CamachoE, HeskethGG, GelbartIA, AttigJ, GkogkasCG, AlainT, Stern-GinossarN, FabianMR
CrossRef
Google scholar
|
[5] |
ChoPF, PoulinF,Cho-ParkYA, Cho-ParkIB, ChicoineJD, LaskoP, SonenbergN (2005) A new paradigm for translational control: inhibition via 5 ‘-3 ‘ mRNA tethering by Bicoid and the eIF4E cognate 4EHP.Cell121(3):411–423
CrossRef
Google scholar
|
[6] |
DjuranovicS, ZinchenkoMK, HurJK, NahviA, BrunelleJL, RogersEJ, GreenR (2010) Allosteric regulation of Argonaute proteins by miRNAs.Nat Struct Mol Biol17(2):144–150
CrossRef
Google scholar
|
[7] |
EulalioA, HuntzingerE, IzaurraldeE (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay.Nat Struct Mol Biol15(4):346–353
CrossRef
Google scholar
|
[8] |
FabianMR, SonenbergN, FilipowiczW (2010) Regulation of mRNA translation and stability by microRNAs.Annu Rev Biochem79:351–379
CrossRef
Google scholar
|
[9] |
FlyntAS, LaiEC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity.Nat Rev Genet9 (11):831–842
CrossRef
Google scholar
|
[10] |
FrankF, FabianMR, StepinskiJ, JemielityJ, DarzynkiewiczE, SonenbergN, NagarB (2011) Structural analysis of 5 ‘-mRNAcap interactions with the human AGO2 MID domain.Embo Reports12(5):415–420
CrossRef
Google scholar
|
[11] |
FuR, OlsenMT, WebbK, BennettEJ, Lykke-AndersenJ (2016) Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements.RNA22(3):373–382
CrossRef
Google scholar
|
[12] |
FukaoA, MishimaY,TakizawaN, OkaS, ImatakaH, PelletierJ, SonenbergN, ThomaC, FujiwaraT (2014) MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans.Mol Cell56(1):79–89
CrossRef
Google scholar
|
[13] |
FukayaT,TomariY (2012) MicroRNAs mediate gene silencing via multiple different pathways in drosophila.Mol Cell48(6):825–836
CrossRef
Google scholar
|
[14] |
FukayaT, IwakawaHO, TomariY (2014) MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila.Mol Cell56(1):67–78
CrossRef
Google scholar
|
[15] |
GingrasAC, RaughtB, SonenbergN (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.Annu Rev Biochem68:913–963
CrossRef
Google scholar
|
[16] |
GuW, XuY, XieX, WangT, KoJH, ZhouT (2014) The role of RNA structure at 5’ untranslated region in microRNA-mediated gene regulation.RNA20(9):1369–1375
CrossRef
Google scholar
|
[17] |
HeimanM, KulickeR, FensterRJ, GreengardP, HeintzN (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP).Nat Protoc9(6):1282–1291
CrossRef
Google scholar
|
[18] |
HumphreysDT, WestmanBJ, MartinDI,PreissT (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function.Proc Natl Acad Sci U S A102 (47):16961–16966
CrossRef
Google scholar
|
[19] |
JacksonRJ, HellenCU, PestovaTV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation.Nat Rev Mol Cell Biol11(2):113–127
CrossRef
Google scholar
|
[20] |
JonasS, IzaurraldeE (2015) NON-CODING RNA Towards a molecular understanding of microRNA-mediated gene silencing.Nat Rev Genet16(7):421–433
CrossRef
Google scholar
|
[21] |
KamenskaA, LuWT, KubackaD, BroomheadH, MinshallN, BushellM, StandartN (2014) Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing.Nucleic Acids Res42(5):3298–3313
CrossRef
Google scholar
|
[22] |
KamenskaA, SimpsonC, VindryC, BroomheadH, BenardM, Ernoult-LangeM, LeeBP,HarriesLW, WeilD, StandartN (2016) The DDX6-4E-T interaction mediates translational repression and P-body assembly.Nucleic Acids Res44(13):6318–6334
CrossRef
Google scholar
|
[23] |
KinchLN, GrishinNV (2009) The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif.Biol Direct4:2
CrossRef
Google scholar
|
[24] |
KiriakidouM, TanGS, LamprinakiS, De Planell-SaguerM, NelsonPT, MourelatosZ (2007) An mRNA m(7)G cap binding-like motif within human Ago2 represses translation.Cell129 (6):1141–1151
CrossRef
Google scholar
|
[25] |
KubackaD, KamenskaA, BroomheadH, MinshallN, DarzynkiewiczE, StandartN (2013) Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells.PLoS ONE8(8):e72761
CrossRef
Google scholar
|
[26] |
LuWT, WilczynskaA, SmithE, BushellM (2014) The diverse roles of the eIF4A family: you are the company you keep.Biochem Soc Trans42:166–172
CrossRef
Google scholar
|
[27] |
MathonnetG, FabianMR, SvitkinYV, ParsyanA, HuckL, MurataT, BiffoS, MerrickWC, DarzynkiewiczE, PillaiRS
CrossRef
Google scholar
|
[28] |
MeijerHA, KongYW, LuWT, WilczynskaA, SpriggsRV, RobinsonSW, GodfreyJD, WillisAE, BushellM (2013) Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation.Science340(6128):82–85
CrossRef
Google scholar
|
[29] |
MeisterG (2007) miRNAs get an early start on translational silencing.Cell131(1):25–28
CrossRef
Google scholar
|
[30] |
MengFY, HensonR, Wehbe-JanekH, GhoshalK, JacobST, PatelT (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.Gastroenterology133(2):647–658
CrossRef
Google scholar
|
[31] |
NishimuraT, PadamsiZ, FakimH, MiletteS, DunhamWH, GingrasAC, FabianMR (2015) The eIF4E-Binding Protein 4ET Is a Component of the mRNA Decay Machinery that Bridges the 5 ‘ and 3 ‘ Termini of Target mRNAs.Cell Rep11(9):1425–1436
CrossRef
Google scholar
|
[32] |
PetersenCP, BordeleauME, PelletierJ, SharpPA (2006) Short RNAs repress translation after initiation in mammalian cells.Mol Cell21(4):533–542
CrossRef
Google scholar
|
[33] |
PfaffJ, MeisterG (2013) Argonaute and GW182 proteins: an effective alliance in gene silencing.Biochem Soc Trans41 (4):855–860
CrossRef
Google scholar
|
[34] |
PillaiRS, BhattacharyyaSN, ArtusCG, ZollerT, CougotN, BasyukE, BertrandE, FilipowiczW (2005) Inhibition of translational initiation by Let-7 microRNA in human cells.Science309 (5740):1573–1576
CrossRef
Google scholar
|
[35] |
QiL, BartJ, TanLP, PlatteelI,SluisT, HuitemaS, HarmsG, FuL, HollemaH, BergA (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma.BMC Cancer9:163
CrossRef
Google scholar
|
[36] |
RicciEP, LimousinT, Soto-RifoR, RubilarPS, DecimoD, OhlmannT (2013) miRNA repression of translation in vitro takes place during 43S ribosomal scanning.Nucleic Acids Res41(1):586–598
CrossRef
Google scholar
|
[37] |
RomE, KimHC, GingrasAC, MarcotrigianoJ, FavreD, OlsenH, BurleySK, SonenbergN (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein.J Biol Chem273(21):13104–13109
CrossRef
Google scholar
|
[38] |
SonenbergN, ShatkinAJ (1977) Reovirus messenger-Rna can be covalently crosslinked via 5’ cap to proteins in initiation-complexes.Proc Natl Acad Sci USA74(10):4288–4292
CrossRef
Google scholar
|
[39] |
TaoX, GaoG (2015) Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs.Mol Cell Biol35(22):3921–3932
CrossRef
Google scholar
|
[40] |
ThermannR, HentzeMW (2007) Drosophila miR2 induces pseudopolysomes and inhibits translation initiation.Nature447 (7146):875–878
CrossRef
Google scholar
|
[41] |
Valencia-SanchezMA, LiuJ, HannonGJ, ParkerR (2006) Control of translation and mRNA degradation by miRNAs and siRNAs.Genes Dev20(5):515–524
CrossRef
Google scholar
|
[42] |
VaraniG (1997) A cap for all occasions.Structure5(7):855–858
CrossRef
Google scholar
|
[43] |
WaltersRW, BradrickSS, GromeierM (2010) Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression.Rna16(1):239–250
CrossRef
Google scholar
|
[44] |
WangBB, YanazA, NovinaCD (2008) MicroRNA-repressed mRNAs contain 40S but not 60S components.Proc NatL Acad Sci USA105(14):5343–5348
CrossRef
Google scholar
|
[45] |
YaoB, LiSQ, JungHM, LianSL,AbadalGX, HanF, FritzlerMJ, ChanEKL (2011) Divergent GW182 functional domains in the regulation of translational silencing.Nucleic Acids Res39(7):2534–2547
CrossRef
Google scholar
|
[46] |
ZuberekJ, KubackaD, JablonowskaA, JemielityJ, StepinskiJ, SonenbergN, DarzynkiewiczE (2007) Weak binding affinity of human 4EHP for mRNA cap analogs.RNA13(5):691–697
CrossRef
Google scholar
|
/
〈 | 〉 |