Screening novel stress granule regulators from a natural compound library

Li-Dan Hu, Xiang-Jun Chen, Xiao-Yan Liao, Yong-Bin Yan

PDF(750 KB)
PDF(750 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (8) : 618-622. DOI: 10.1007/s13238-017-0430-6
LETTER
LETTER

Screening novel stress granule regulators from a natural compound library

Author information +
History +

Cite this article

Download citation ▾
Li-Dan Hu, Xiang-Jun Chen, Xiao-Yan Liao, Yong-Bin Yan. Screening novel stress granule regulators from a natural compound library. Protein Cell, 2017, 8(8): 618‒622 https://doi.org/10.1007/s13238-017-0430-6

References

[1]
AndersonP, KedershaN (2006) RNA granules. J Cell Biol172:803–808
CrossRef Google scholar
[2]
AndersonP, KedershaN (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol10:430–436
CrossRef Google scholar
[3]
AndersonP, KedershaN, IvanovP (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta1849:861–870
CrossRef Google scholar
[4]
JainS, WheelerJR, WaltersRW, AgrawalA, BarsicA, ParkerR (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell164:487–498
CrossRef Google scholar
[5]
KatoM, HanTW, XieS, ShiK, DuX, WuLC, MirzaeiH, GoldsmithEJ, LonggoodJ, PeiJ (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell149:753–767
CrossRef Google scholar
[6]
KedershaNL, GuptaM, LiW, MillerI, AndersonP (1999) RNAbinding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol147:1431–1442
CrossRef Google scholar
[7]
LiYR, KingOD, ShorterJ, GitlerAD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol201:361–372
CrossRef Google scholar
[8]
MahboubiH, StochajU (2017) Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim Biophys Acta1863:884–895
CrossRef Google scholar
[9]
PanasMD, IvanovP, AndersonP (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol215:313–323
CrossRef Google scholar
[10]
PatelA, LeeHO, JawerthL, MaharanaS, JahnelM, HeinMY, StoynovS, MahamidJ, SahaS, FranzmannTM (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell162:1066–1077
CrossRef Google scholar
[11]
ProtterDS, ParkerR (2016) Principles and properties of stress granules. Trends Cell Biol26:668–679
CrossRef Google scholar
[12]
ReijnsMA, AlexanderRD, SpillerMP, BeggsJD (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci121:2463–2472
CrossRef Google scholar
[13]
StoecklinG, StubbsT, KedershaN, WaxS, RigbyWF, BlackwellTK, AndersonP (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J23:1313–1324
CrossRef Google scholar
[14]
TourriereH, ChebliK, ZekriL, CourselaudB, BlanchardJM, BertrandE, TaziJ (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol160:823–831
CrossRef Google scholar
[15]
WilczynskaA, AigueperseC, KressM, DautryF, WeilD (2005) The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci118:981–992
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(750 KB)

Accesses

Citations

Detail

Sections
Recommended

/