Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

Xiaojun Liu, Shuguang Jiang, Chongyun Fang, Hua Li, Xuhua Zhang, Fuqin Zhang, Carl H. June, Yangbing Zhao

PDF(2079 KB)
PDF(2079 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (7) : 514-526. DOI: 10.1007/s13238-017-0422-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

Author information +
History +

Abstract

The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cellbased adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vivo and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB). The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the coelectroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

Keywords

T lymphocytes / CAR / manufacture / gene transfer / RNA electroporation

Cite this article

Download citation ▾
Xiaojun Liu, Shuguang Jiang, Chongyun Fang, Hua Li, Xuhua Zhang, Fuqin Zhang, Carl H. June, Yangbing Zhao. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation. Protein Cell, 2017, 8(7): 514‒526 https://doi.org/10.1007/s13238-017-0422-6

References

[1]
BarrettDM, ZhaoY, LiuX, JiangS, CarpenitoC, KalosM, CarrollRG, JuneCH, GruppSA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells.Human Gene Ther22:1575–1586
CrossRef Google scholar
[2]
BarrettDM, SinghN, LiuX, JiangS, JuneCH, GruppSA, ZhaoY (2014) Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy.Cytotherapy16:619–630
CrossRef Google scholar
[3]
BesserMJ, Shapira-FrommerR, TrevesAJ, ZippelD, ItzhakiO, HershkovitzL, LevyD, KubiA, HovavE, ChermoshniukN (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients.Clin Cancer Res16:2646–2655
CrossRef Google scholar
[4]
BrentjensRJ, DavilaML,RiviereI, ParkJ,WangX, CowellLG,BartidoS, StefanskiJ, TaylorC, OlszewskaM (2013) CD19-targeted Tcells rapidly induce molecular remissions in adults with chemotherapyrefractory acute lymphoblastic leukemia.Sci Transl Med5:177ra138
CrossRef Google scholar
[5]
ButlerMO, ImatakiO, YamashitaY, TanakaM, AnsenS, BerezovskayaA, MetzlerG, MilsteinMI, MooneyMM, MurrayAP (2012) Ex vivo expansion of human CD8+ T cells using autologous CD4+ T cell help.PloS ONE7:e30229
CrossRef Google scholar
[6]
CampagnoloC, MeyersKJ, RyanT, AtkinsonRC, ChenYT, ScanlanMJ, RitterG, OldLJ, BattCA (2004) Real-Time, label-free monitoring of tumor antigen and serum antibody interactions.J Biochem Biophys Methods61:283–298
CrossRef Google scholar
[7]
CarpenitoC, MiloneMC, HassanR, SimonetJC, LakhalM, SuhoskiMM, Varela-RohenaA, HainesKM, HeitjanDF, AlbeldaSM (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.Proc Natl Acad Sci USA106:3360–3365
CrossRef Google scholar
[8]
GattinoniL, KlebanoffCA, PalmerDC, WrzesinskiC, KerstannK, YuZ, FinkelsteinSE, TheoretMR, RosenbergSA, RestifoNP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells.J Clin Investig115:1616–1626
CrossRef Google scholar
[9]
GattinoniL, LugliE, JiY, PosZ, PaulosCM, QuigleyMF, AlmeidaJR, GostickE, YuZ, CarpenitoC (2011) A human memory T cell subset with stem cell-like properties.Naturemedicine17:1290–1297
CrossRef Google scholar
[10]
GattinoniL, SpeiserDE, LichterfeldM, BoniniC (2017) T memory stem cells in health and disease.Nat Med23:18–27
CrossRef Google scholar
[11]
HermansIF, SilkJD, YangJ, PalmowskiMJ, GileadiU, McCarthyC, SalioM, RoncheseF, CerundoloV (2004) The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKTmediated cytotoxicity against multiple targets in vitro and in vivo.J Immunol Methods285:25–40
CrossRef Google scholar
[12]
KlossCC, CondominesM, CartellieriM, BachmannM, SadelainM (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells.Nat Biotechnol31:71–75
CrossRef Google scholar
[13]
LeeDW, KochenderferJN, Stetler-StevensonM, CuiYK, DelbrookC, FeldmanSA, FryTJ, OrentasR, SabatinoM, ShahNN (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.Lancet385:517–528
CrossRef Google scholar
[14]
LevineBL, BernsteinWB, ConnorsM, CraigheadN, LindstenT, ThompsonCB, JuneCH (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells.J Immunol159:5921–5930
[15]
LiuX, JiangS, FangC, YangS, OlalereD, PequignotEC, CogdillAP, LiN, RamonesM, GrandaB (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice.Cancer Res75:3596–3607
CrossRef Google scholar
[16]
MausMV, FraiettaJA, LevineBL, KalosM, ZhaoY, JuneCH (2014) Adoptive immunotherapy for cancer or viruses.Ann Rev Immunol32:189–225
CrossRef Google scholar
[17]
MorganRA, DudleyME, WunderlichJR, HughesMS, YangJC, SherryRM, RoyalRE, TopalianSL, KammulaUS, RestifoNP(2006) Cancer regression in patients after transfer of genetically engineered lymphocytes.Science314:126–129
CrossRef Google scholar
[18]
PorterDL, LevineBL, KalosM, BaggA, JuneCH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.N Engl J Med365:725–733
CrossRef Google scholar
[19]
PowellDJ Jr, DudleyME, RobbinsPF, RosenbergSA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumorreactive effector memory T cells in humans after adoptive cell transfer therapy.Blood105:241–250
CrossRef Google scholar
[20]
RenJ, LiuX, FangC, JiangS, JuneCH, ZhaoY (2016) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition.Clin Cancer Res23(9):2255–2266
CrossRef Google scholar
[21]
RiddellSR, GreenbergPD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells.J Immunol Methods128:189–201
CrossRef Google scholar
[22]
RosenbergSA(2008) Overcoming obstacles to the effective immunotherapy of human cancer.Proc Natl Acad Sci USA105:12643–12644
CrossRef Google scholar
[23]
SabatinoM, HuJ, SommarivaM, GautamS, FellowesV, HockerJD, DoughertyS, QinH, KlebanoffCA, FryTJ (2016) Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies.Blood128:519–528
CrossRef Google scholar
[24]
StephanMT, PonomarevV, BrentjensRJ, ChangAH, DobrenkovKV, HellerG, SadelainM (2007) T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection.Nat Med13:1440–1449
CrossRef Google scholar
[25]
SuhoskiMM, GolovinaTN, AquiNA, TaiVC, Varela-RohenaA, MiloneMC, CarrollRG, RileyJL, JuneCH (2007) Engineering artificial antigen-presenting cells to express a diverse array of costimulatory molecules.Mol Ther15:981–988
CrossRef Google scholar
[26]
WattsTH (2005)TNF/TNFR family members in costimulation of T cell responses.Ann Rev Immunol23:23–68
CrossRef Google scholar
[27]
YangS, DudleyME, RosenbergSA, MorganRA (2010) A simplified method for the clinical-scale generation of central memory-like CD8+ T cells after transduction with lentiviral vectors encoding antitumor antigen T-cell receptors.J Immunother33:648–658
CrossRef Google scholar
[28]
YangS, JiY, GattinoniL, ZhangL, YuZ, RestifoNP, RosenbergSA, MorganRA (2013) Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails.Cancer Immunol Immunother62:727–736
CrossRef Google scholar
[29]
ZhaoY, BoczkowskiD, NairSK, GilboaE (2003) Inhibition of invariant chain expression in dendritic cells presenting endogenous antigens stimulates CD4+ T-cell responses and tumor immunity.Blood102:4137–4142
CrossRef Google scholar
[30]
ZhaoY, ZhengZ, CohenCJ, GattinoniL, PalmerDC, RestifoNP, RosenbergSA, MorganRA (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation.Mol Ther13:151–159
CrossRef Google scholar
[31]
ZhaoY, MoonE, CarpenitoC, PaulosCM, LiuX, BrennanAL, ChewA, CarrollRG, SchollerJ, LevineBL (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.Cancer Res70:9053–9061
CrossRef Google scholar
[32]
ZhouJ, DudleyME, RosenbergSA, RobbinsPF (2005a) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy.J Immunother28:53–62
CrossRef Google scholar
[33]
ZhouJ, ShenX, HuangJ, HodesRJ, RosenbergSA, RobbinsPF (2005b) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy.J Immunol175:7046–7052
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(2079 KB)

Accesses

Citations

Detail

Sections
Recommended

/