Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase
Hai-tao Zhang, Zi-jian Zhang, Wei-chuan Mo, Ping-dong Hu, Hai-min Ding, Ying Liu, Qian Hua, Rong-qiao He
Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase
Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the underlying mechanism remains unclear. In this study, we evaluate the role of HMF on the regulation of cellular reactive oxygen species (ROS) in human neuroblastoma SH-SY5Y cells. We found that HMF exposure led to ROS decrease, and that restoring the decrease by additional H2O2 rescued the HMF-enhanced cell proliferation. The measurements on ROS related indexes, including total anti-oxidant capacity, H2O2 and superoxide anion levels, and superoxide dismutase (SOD) activity and expression, indicated that the HMF reduced H2O2 production and inhibited the activity of CuZn-SOD. Moreover, the HMF accelerated the denaturation of CuZn-SOD as well as enhanced aggregation of CuZn-SOD protein, in vitro. Our findings indicate that CuZn-SOD is able to response to the HMF stress and suggest it a mediator of the HMF effect.
hypomagnetic field / reactive oxygen species / hydrogen peroxide / superoxide dismutase / oxidative stress
[1] |
BabychVI (1995) The characteristics of tissue lipid peroxidation in the internal organs and the lipid metabolic indices of the blood plasma in a low geomagnetic field. Fiziol Zh41(5–6):44–49
|
[2] |
BabychVI (1996) The characteristics of tissue lipid peroxidation of the internal organs in anaphylaxis under the action of a hypo- or hypermagnetic field. Fiziol Zh42(5–6):66–71
|
[3] |
BelyavskayaNA (2004) Biological effects due to weak magnetic field on plants. Adv Space Res34(7):1566–1574. doi:10.1016/j.asr.2004.01.021
CrossRef
Google scholar
|
[4] |
BinhiVN, SarimovRM (2009) Zero magnetic field effect observed in human cognitive processes. Electromagn Biol Med28(3):310–315. doi:10.1080/15368370903167246
CrossRef
Google scholar
|
[5] |
BinhiVN, SarimovRM (2013) Effect of the hypomagnetic field on the size of the eye pupil. Phys Biol Phys. http://arxiv.org/abs/1302.2741
|
[6] |
BlissVL, HeppnerFH (1976) Circadian activity rhythm influenced by near zero magnetic field. Nature261(5559):411–412
CrossRef
Google scholar
|
[7] |
CalabroE, CondelloS, CurroM, FerlazzoN, CaccamoD, MagazuS
CrossRef
Google scholar
|
[8] |
ChenL, WeiY, WangX, HeR (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS ONE5(2):e9052. doi:10.1371/journal.pone.0009052
CrossRef
Google scholar
|
[9] |
CiorbaD, MorariuVV (2001) Life in zero magnetic field. III. Activity of aspartate aminotransferasse and alanine aminotransferase during in vitro aging of human blood. Electromagn Biol Med20 (3):313–321
|
[10] |
ConleyCC (1970) A review of the biological effects of very low magnetic fields. NASA TN D-5902
|
[11] |
DrogeW (2002) Free radicals in the physiological control of cell function. Physiol Rev82(1):47–95. doi:10.1152/physrev.00018.2001
CrossRef
Google scholar
|
[12] |
EstacioSG, LealSS, CristovaoJS, FaiscaPF, GomesCM (2015) Calcium binding to gatekeeper residues flanking aggregationprone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). Biochim Biophys Acta1854(2):118–126. doi:10.1016/j.bbapap.2014.11.005
CrossRef
Google scholar
|
[13] |
FesenkoEE, MezhevikinaLM, OsipenkoMA, GordonRY, KhutzianSS (2010) Effect of the “zero” magnetic field on early embryogenesis in mice. Electromagn Biol Med29(1–2):1–8. doi:10.3109/15368371003627290
CrossRef
Google scholar
|
[14] |
FormanHJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med97:398–407. doi:10.1016/j.freeradbiomed.2016.07.003
CrossRef
Google scholar
|
[15] |
FuJP, MoWC, LiuY, HeRQ (2016a) Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field. Bioelectromagnetics37(4):212–222. doi:10.1002/bem.21968
CrossRef
Google scholar
|
[16] |
FuJP, MoWC, LiuY, BartlettPF, HeRQ (2016b) Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells. Protein Cell7(9):624–637. doi:10.1007/s13238-016-0300-7
CrossRef
Google scholar
|
[17] |
GurfinkelIuI, VasinAL, MatveevaTA, SasonkoML (2014) Evaluation of the hypomagnetic environment effects on capillary blood circulation, blood pressure and heart rate. Aviakosm Ekolog Med48(2):24–30
|
[18] |
HeC, HartPC, GermainD, BoniniMG (2016) SOD2 and the Mitochondrial UPR: Partners Regulating Cellular Phenotypic Transitions. Trends Biochem Sci41(7):568–577. doi:10.1016/j.tibs.2016.04.004
CrossRef
Google scholar
|
[19] |
JelenkovicA, JanacB, PesicV, JovanovicDM, VasiljevicI, ProlicZ (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull68(5):355–360. doi:10.1016/j.brainresbull.2005.09.011
CrossRef
Google scholar
|
[20] |
KhareSD, CaplowM, DokholyanNV (2004) The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA101(42):15094–15099. doi:10.1073/pnas.0406650101
CrossRef
Google scholar
|
[21] |
KopanevVI, EfimenkoGD, ShakulaAV (1979) Biological effect of a hypogeomagnetic environment on an organism. Biol Bull Acad Sci USSR. 6(3):289–298
|
[22] |
LiS, CaseAJ, YangRF, SchultzHD, ZimmermanMC (2013) Overexpressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide. Redox Biol2:8–14. doi:10.1016/j.redox.2013.11.002
CrossRef
Google scholar
|
[23] |
LiuJ, ZhaoW, FanRL, WangWH, TianZQ, PengJ
CrossRef
Google scholar
|
[24] |
MartinoCF, CastelloPR (2011) Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields. PLoS ONE6(8):e22753. doi:10.1371/journal.pone.0022753
CrossRef
Google scholar
|
[25] |
MoWC, LiuY, HeRQ (2012a) A biological perspective of the hypomagnetic field: from definition towards mechanism. Prog Biochem Biophys39(9):835–842. doi:10.3724/Sp.J.1206.2011.00597
|
[26] |
MoWC, LiuY, CooperHM, HeRQ (2012b) Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics33(3):238–246. doi:10.1002/bem.20699
CrossRef
Google scholar
|
[27] |
MoWC, ZhangZJ, LiuY, BartlettPF, HeRQ (2013) Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression. PLoS ONE8(1): e54775. doi:10.1371/journal.pone.0054775
CrossRef
Google scholar
|
[28] |
MoW, LiuY, HeR (2014a) Hypomagnetic field, an ignorable environmental factor in space? Sci China Life Sci57(7):726–728. doi:10.1007/s11427-014-4662-x
CrossRef
Google scholar
|
[29] |
MoW, LiuY, BartlettPF, HeR (2014b) Transcriptome profile of human neuroblastoma cells in the hypomagnetic field. Sci China Life Sci57(4):448–461. doi:10.1007/s11427-014-4644-z
CrossRef
Google scholar
|
[30] |
MoWC, FuJP, DingHM, LiuY, HuaQ, HeRQ (2015) Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice. Prog Biochem Biophys. 42(7):639–646
|
[31] |
MoWC, ZhangZJ, WangDL, LiuY, BartlettPF, HeRQ (2016) Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Sci Rep6:22624. doi:10.1038/srep22624
CrossRef
Google scholar
|
[32] |
NepomnyashchikhLM, LushnikovaEL, KlinnikovaMG, MolodykhOP, AshcheulovaNV (1997) Effect of hypogeomagnetic field on tissue and intracellular reorganization of mouse myocardium. Bull Exp Biol Med124(10):1021–1024. doi:10.1007/Bf02446851
CrossRef
Google scholar
|
[33] |
OsipenkoMA, MezhevikinaLM, KrastsIV, IashinVA, NovikovVV, FesenkoEE (2008) Influence of “zero” magnetic field on the growth of embryonic cells and primary embryos of mouse in vitro. Biofizika53(4):705–712
|
[34] |
PratoFS, RobertsonJA, DesjardinsD, HenselJ, ThomasAW (2005) Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics26(2):109–117. doi:10.1002/bem.20056
CrossRef
Google scholar
|
[35] |
RheeSG, ChangTS, BaeYS, LeeSR, KangSW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol14:S211–S215. doi:10.1097/01.Asn.0000077404.45564.7e
CrossRef
Google scholar
|
[36] |
ShustIV, KostinikIM (1975) Effect of a strong constant magnetic field and a hypomagnetic surrounding medium on histochemical indices of albino rat liver. Kosm Biol Aviakosm Med9(6):19–25
|
[37] |
ShustIV, KostinikIM (1976) Reaction of the animal adrenal cortex to the action of a strong, constant magnetic field and to a hypomagnetic environment. Probl Endokrinol (Mosk). 22(2):86–92
|
[38] |
SongX, LiuBC, LuXY, YangLL, ZhaiYJ, EatonAF
CrossRef
Google scholar
|
[39] |
TauletN, Delorme-WalkerVD, DerMardirossianC (2012) Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS ONE7(8):e41342. doi:10.1371/journal.pone.0041342
CrossRef
Google scholar
|
[40] |
TrachoothamD, LuW, OgasawaraMA, NilsaRD, HuangP (2008) Redox regulation of cell survival. Antioxid Redox Signal10 (8):1343–1374. doi:10.1089/ars.2007.1957
CrossRef
Google scholar
|
[41] |
WanGJ, JiangSL, ZhaoZC, XuJJ, TaoXR, SwordGA
CrossRef
Google scholar
|
[42] |
XiaoY, WangQ, XuML, JiangJC, LiB (2009) Chicks incubated in hypomagnetic field need more exogenous noradrenaline for memory consolidation. Adv Space Res44(2):226–232. doi:10.1016/j.asr.2009.04.013
CrossRef
Google scholar
|
[43] |
ZamoshchinaTA, KrivovaNA, KhodanovichM, TrukhanovKA, TukhvatulinRT, ZaevaOB
|
[44] |
ZellerKS, RiazA, SarveH, LiJ, TengholmA, JohanssonS (2013) The role of mechanical force and ROS in integrin-dependent signals. PLoS ONE8(5):e64897. doi:10.1371/journal.pone.0064897
CrossRef
Google scholar
|
[45] |
ZhangB, LuH, XiW, ZhouX, XuS, ZhangK
CrossRef
Google scholar
|
[46] |
ZhangY, BermanGP, KaisS (2014) Sensitivity and entanglement in the avian chemical compass. Phys Rev E90(4):042707. doi:10.1103/PhysRevE.90.042707
CrossRef
Google scholar
|
[47] |
ZhaoXB, QianH, CourtneyJM (1998) Artificial cell containing superoxide dismutase—selection of folding aids for stabilisation of SOD. Artif Cells Blood Substit Immobil Biotechnol26(4):341–358
CrossRef
Google scholar
|
[48] |
ZhuD, ScandaliosJG (1995) The maize mitochondrial MnSODS encoded by multiple genes are localized in the mitochondrial matrix of transformed yeast cells. Free Radic Biol Med18 (2):179–183
CrossRef
Google scholar
|
/
〈 | 〉 |