The Hippo pathway in tissue homeostasis and regeneration
Yu Wang, Aijuan Yu, Fa-Xing Yu
The Hippo pathway in tissue homeostasis and regeneration
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathwaytargeted regenerative medicines.
Hippo / YAP / regeneration
[1] |
AylonY, SarverA, TovyA, AinbinderE, OrenM (2014) Lats2 is critical for the pluripotency and proper differentiation of stem cells.Cell Death Differ21:624–633
CrossRef
Google scholar
|
[2] |
AzzolinL, PancieraT, SoligoS, EnzoE, BicciatoS, DupontS, BresolinS, FrassonC, BassoG, GuzzardoV
CrossRef
Google scholar
|
[3] |
BaiH, ZhangN, XuY, ChenQ, KhanM, PotterJJ, NayarSK, CornishT, AlpiniG, BronkS
CrossRef
Google scholar
|
[4] |
BarkerN (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration.Nat Rev Mol Cell Bio15:19–33
CrossRef
Google scholar
|
[5] |
BarryER, MorikawaT, ButlerBL, ShresthaK, de la RosaR, YanKS, FuchsCS, MagnessST, SmitsR, OginoS
CrossRef
Google scholar
|
[6] |
BenhamoucheS, CurtoM, SaotomeI, GladdenAB, LiuCH, GiovanniniM, McClatcheyAI (2010) Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver.Genes Dev24:1718–1730
CrossRef
Google scholar
|
[7] |
BeyerTA, WeissA, KhomchukY, HuangK, OgunjimiAA, VarelasX, WranaJL (2013) Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells.Cell Rep5:1611–1624
CrossRef
Google scholar
|
[8] |
BondAM, MingG, SongH (2015) Adult mammalian neural stem cells and neurogenesis: five decades later.Cell Stem Cell17:385–395
CrossRef
Google scholar
|
[9] |
BorowiakM, WiglerMH (2004) Met provides essential signals for liver regeneration.Proc Natl Acad Sci USA101:10608–10613
CrossRef
Google scholar
|
[10] |
CaiJ, ZhangN, ZhengY, de WildeRF, MaitraA, PanD (2010) The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program.Genes Dev24:2383–2388
CrossRef
Google scholar
|
[11] |
CamargoFD, GokhaleS, JohnnidisJB, FuD, BellGW, JaenischR, BrummelkampTR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells.Curr Biol17:2054–2060
CrossRef
Google scholar
|
[12] |
CaoX, PfaffSL, GageFH (2008) YAP regulates neural progenitor cell number via the TEA domain transcription factor.Genes Dev22:3320–3334
CrossRef
Google scholar
|
[13] |
CarlsonBM (2007) Principles of regenerative biology.Academic Press, Cambridge
|
[14] |
ChenQ, ZhangN, XieR, WangW, CaiJ, ChoiKS, DavidKK, HuangB, YabutaN, NojimaH (2015) Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP.Genes Dev29:1285–1297
CrossRef
Google scholar
|
[15] |
ChungH, LeeBK, UpretyN, ShenW, LeeJ, KimJ (2016) Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells.Embo Rep17:519–529
CrossRef
Google scholar
|
[16] |
CleversH (2016) Modeling development and disease with organoids.Cell165:1586–1597
CrossRef
Google scholar
|
[17] |
CockburnK, BiecheleS, GarnerJ, RossantJ (2013) The hippo pathway member Nf2 Is required for inner cell mass specification.Curr Biol23:1195–1201
CrossRef
Google scholar
|
[18] |
CrosnierC, StamatakiD, LewisJ (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control.Nat Rev Genet7:349–359
CrossRef
Google scholar
|
[19] |
DelRe DP, YangY, NakanoN, ChoJ, ZhaiP, YamamotoT, ZhangN, YabutaN, NojimaH, PanD
CrossRef
Google scholar
|
[20] |
DelreD, MatsudaT, ZhaiP, MaejimaY, JainMR, LiuT, LiH, HsuCP, SadoshimaJ (2014) Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL.Mol Cell54:639–650
CrossRef
Google scholar
|
[21] |
DingR, WeynansK, BossingT, BarrosCS, BergerC (2016) The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells.Nat Commun7:10510
CrossRef
Google scholar
|
[22] |
DongJ, FeldmannG, HuangJ, WuS, ZhangN, ComerfordSA, GayyedMF, AndersRA, MaitraA, PanD (2007) Elucidation of a universal size-control mechanism in drosophila and mammals.Cell130:1120–1133
CrossRef
Google scholar
|
[23] |
ElbediwyA, Vincent-MistiaenZI, Spencer-DeneB, StoneRK, BoeingS, WculekSK, CorderoJ, TanEH, RidgwayR, BruntonVG
CrossRef
Google scholar
|
[24] |
FanF, HeZ, KongLL, ChenQ, YuanQ, ZhangS, YeJ, LiuH, SunX, GengJ
CrossRef
Google scholar
|
[25] |
GjorevskiN, SachsN,ManfrinA,GigerS, BraginaME, Ordóñez-MoránP, CleversH, LutolfMP (2016) Designermatrices for intestinal stem cell and organoid culture.Nature539(7630):560–564
CrossRef
Google scholar
|
[26] |
GongR, YuFX (2015) Targeting the Hippo pathway for anti-cancer therapies.Curr Med Chem22:1
CrossRef
Google scholar
|
[27] |
GoodellMA, NguyenH, ShroyerN (2015) Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments.Nat Rev Mol Cell Biol16:299–309
CrossRef
Google scholar
|
[28] |
GregorieffA, LiuY, InanlouMR, KhomchukY, WranaJL (2015) Yapdependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer.Nature526:715–718
CrossRef
Google scholar
|
[29] |
GurtnerGC, SabineW, YannB, LongakerMT (2012) Wound repair and regeneration.Nature49:314–321
|
[30] |
HalderG, JohnsonRL (2011) Hippo signaling: growth control and beyond.Development138:9–22
CrossRef
Google scholar
|
[31] |
HanM, YangX, FarringtonJE, MuneokaK (2003) Digit regeneration is regulated by Msx1 and BMP4 in fetal mice.Development130:5123–5132
CrossRef
Google scholar
|
[32] |
HeallenT, ZhangM, WangJ, Bonilla-ClaudioM, KlysikE, JohnsonRL, MartinJF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size.Science332:458–461
CrossRef
Google scholar
|
[33] |
HeallenT, MorikawaY, LeachJ, TaoG, WillersonJT, JohnsonRL, MartinJF (2013) Hippo signaling impedes adult heart regeneration.Development140:4683–4690
CrossRef
Google scholar
|
[34] |
HirateY, HiraharaS, InoueK, SuzukiA, AlarconVB, AkimotoK, HiraiT, HaraT, AdachiM, ChidaK (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos.Curr Biol23:1181–1194
CrossRef
Google scholar
|
[35] |
HuangZ, HuJ, PanJ, WangY, HuG, ZhouJ, MeiL, XiongW (2016) YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation.Development143:2398–2409
CrossRef
Google scholar
|
[36] |
HuhCG, FactorVM, SánchezA, UchidaK, ConnerEA, ThorgeirssonSS (2004) Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair.Proc Natl Acad Sci USA101:4477–4482
CrossRef
Google scholar
|
[37] |
Iglesias-BartolomeR, TorresD, MaroneR, FengX, MartinD, SimaanM, ChenM, WeinsteinLS, TaylorSS, MolinoloAA
CrossRef
Google scholar
|
[38] |
ImajoM, EbisuyaM, NishidaE (2014) Dual role of YAP and TAZ in renewal of the intestinal epithelium.Nat Cell Biol17:7–19
CrossRef
Google scholar
|
[39] |
KarpowiczP, PerezJ, PerrimonN (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration.Development137:4135–4145
CrossRef
Google scholar
|
[40] |
KederA, Rives-QuintoN, AerneBL, FrancoM, TaponN, CarmenaA (2015) The Hippo pathway core cassette regulates asymmetric cell division.Curr Biol25:2739–2750
CrossRef
Google scholar
|
[41] |
KimKA, KakitaniM, ZhaoJ, OshimaT, TangT, BinnertsM, LiuY, BoyleB, ParkE, EmtageP (2005) Mitogenic influence of human R-spondin1 on the intestinal epithelium.Science309:1256–1259
CrossRef
Google scholar
|
[42] |
KorinekV, BarkerN, MoererP, VanDE, HulsG, PetersPJ, CleversH (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4.Nat Genet19:379–383
CrossRef
Google scholar
|
[43] |
LaflammeMA (2011) Heart regeneration.Nature473:326–335
CrossRef
Google scholar
|
[44] |
LaneSW, WilliamsDA, WattFM (2014) Modulating the stem cell niche for tissue regeneration.Nat Biotechnol32:795–803
CrossRef
Google scholar
|
[45] |
LavadoA, HeY, PareJ, NealeG, OlsonEN, GiovanniniM, CaoX (2013) Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators.Development140:3323–3334
CrossRef
Google scholar
|
[46] |
LavadoA, WareM, PareJ, CaoX (2014) The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap.Development141:4182–4193
CrossRef
Google scholar
|
[47] |
LeeJH, KimTS, YangTH, KooBK, OhSP, LeeKP, OhHJ, LeeSH, KongYY, KimJM
CrossRef
Google scholar
|
[48] |
LeeKP, LeeJH, KimTS, KimTH, ParkHD, ByunJS, KimMC, JeongWI, CalvisiDF, KimJM
CrossRef
Google scholar
|
[49] |
LeeD, ParkJO, KimT, KimS, KimT, KimM, ParkGS, KimJ, KuninakaS, OlsonEN
CrossRef
Google scholar
|
[50] |
LiL, CleversH (2010) Coexistence of quiescent and active adult stem cells in mammals.Science327:542–545
CrossRef
Google scholar
|
[51] |
LiP, ChenY, MakKK, WongCK, WangCC, YuanP (2013) Functional role of Mst1/Mst2 in embryonic stem cell differentiation.PLoS ONE8:e79867
CrossRef
Google scholar
|
[52] |
LiQ, LiS, Mana-CapelliS, RothFR, DanaiLV, AmcheslavskyA, NieY, KanekoS, YaoX, ChenX
CrossRef
Google scholar
|
[53] |
LianI, KimJ, OkazawaH, ZhaoJ, ZhaoB, YuJ, ChinnaiyanA, IsraelMA, GoldsteinLS, AbujarourR (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation.Genes Dev24:1106–1118
CrossRef
Google scholar
|
[54] |
LinZ, von GiseA, ZhouP, GuF, MaQ, JiangJ, YauAL, BuckJN, GouinKA, vanGorp PRR
CrossRef
Google scholar
|
[55] |
LinZ, GuoH, CaoY, ZohrabianS, ZhouP, MaQ, VanDusenN, GuoY, ZhangJ, StevensSM
CrossRef
Google scholar
|
[56] |
LorthongpanichC, MesserschmidtDM, ChanSW, HongW, KnowlesBB, SolterD (2013) Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation.Genes Dev27:1441–1446
CrossRef
Google scholar
|
[57] |
LuL, LiY, KimSM, BossuytW, LiuP, QiuQ, WangY, HalderG, FinegoldMJ, LeeJS
CrossRef
Google scholar
|
[58] |
MatsuiY, NakanoN, ShaoD, GaoS, LuoW, HongC, ZhaiP, HolleE, YuX, YabutaN
CrossRef
Google scholar
|
[59] |
MiyajimaA, TanakaM, ItohT (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell14:561–574
CrossRef
Google scholar
|
[60] |
MokalledMH, PatraC, DicksonAL, EndoT, StainierDY, PossKD (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.Science354:630–634
CrossRef
Google scholar
|
[61] |
MorikawaY, ZhangM, HeallenT, LeachJ, TaoG, XiaoY, BaiY, LiW, WillersonJT, MartinJF (2015) Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippodeficient mice.Sci Signal8:ra41
CrossRef
Google scholar
|
[62] |
MoroishiT, ParkHW, QinB, ChenQ, MengZ, PlouffeSW, TaniguchiK, YuFX, KarinM, PanD (2015) A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis.Genes Dev29:1271–1284
CrossRef
Google scholar
|
[63] |
MoroishiT, HayashiT, PanWW, FujitaY, HoltMV, QinJ, CarsonDA, GuanKL (2016) The Hippo pathway kinases LATS1/2 suppress cancer immunity.Cell167:1525–1539
CrossRef
Google scholar
|
[64] |
OdashimaM, UsuiS, TakagiH, HongC, LiuJ, YokotaM, SadoshimaJ (2007) Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction.Circ Res100:1344–1352
CrossRef
Google scholar
|
[65] |
PanD (2010) The Hippo signaling pathway in development and cancer.Dev Cell19:491–505
CrossRef
Google scholar
|
[66] |
PancieraT, AzzolinL, FujimuraA, Di BiagioD, FrassonC, BresolinS, SoligoS, BassoG, BicciatoS, RosatoA
CrossRef
Google scholar
|
[67] |
ParkR, MoonUY, ParkJY, HughesLJ, JohnsonRL, ChoS, KimS (2016) Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus.Nat Commun7:10329
CrossRef
Google scholar
|
[68] |
PoernbacherI, BaumgartnerR, MaradaSK, EdwardsK, StockerH (2012) Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation.Curr Biol22:389–396
CrossRef
Google scholar
|
[69] |
PoitelonY, Lopez-AnidoC, CatignasK, BertiC, PalmisanoM, WilliamsonC, AmerosoD, AbikoK, HwangY, GregorieffA
CrossRef
Google scholar
|
[70] |
PoonCLC, MitchellKA, KondoS, ChengLY, HarveyKF (2016) The Hippo pathway regulates neuroblasts and brain size in Drosophila melanogaster.Curr Biol26:1034–1042
CrossRef
Google scholar
|
[71] |
PorrelloER, OlsonEN (2014) A neonatal blueprint for cardiac regeneration.Stem Cell Res13:556–570
CrossRef
Google scholar
|
[72] |
QianL, HuangY, SpencerCI, FoleyA, VedanthamV, LiuL, ConwaySJ, FuJD, SrivastavaD (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.Nature485:593–598
CrossRef
Google scholar
|
[73] |
QinH, BlaschkeK, WeiG, OhiY, BlouinL, QiZ, YuJ, YehRF, HebrokM, Ramalho-SantosM (2012) Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming.Hum Mol Genet21:2054–2067
CrossRef
Google scholar
|
[74] |
QinH, HejnaM, LiuY, PerchardeM, WossidloM, BlouinL, Durruthy-DurruthyJ, WongP, QiZ, YuJ
CrossRef
Google scholar
|
[75] |
ReddyBVVG, IrvineKD (2011) Regulation of Drosophila glial cell proliferation by Merlin–Hippo signaling.Development138:5201–5212
CrossRef
Google scholar
|
[76] |
RenF, WangB, YueT, YunEY, IpYT, JiangJ (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways.Proc Natl Acad Sci USA107:21064–21069
CrossRef
Google scholar
|
[77] |
RuizMM, RegueiroJR (2012) New tools in regenerative medicine: gene therapy.Springer, New York
|
[78] |
SasakiH (2015) Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos.Semin Cell Dev Biol125:69–76
CrossRef
Google scholar
|
[79] |
SatoT, vanEs JH, SnippertHJ, StangeDE, VriesRG, VanDBM, BarkerN, ShroyerNF, VanDWM, CleversH (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.Nature469:415–418
CrossRef
Google scholar
|
[80] |
SchlegelmilchK, MohseniM, KirakO, PruszakJ, RodriguezJR, ZhouD, KregerBT, VasioukhinV, AvruchJ, BrummelkampTR
CrossRef
Google scholar
|
[81] |
ShaoD, ZhaiP, DelRe DP, SciarrettaS, YabutaN, NojimaH, LimD, PanD, SadoshimaJ (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response.Nat Commun.
CrossRef
Google scholar
|
[82] |
ShawRL, KohlmaierA, PoleselloC, VeelkenC, EdgarBA, TaponN (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration.Development137:4147–4158
CrossRef
Google scholar
|
[83] |
SolanasG, BenitahSA (2013) Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche.Nat Rev Mol Cell Biol14:737–748
CrossRef
Google scholar
|
[84] |
SongH, MakKK, TopolL, YunK, HuJ, GarrettL, ChenY, ParkO, ChangJ, SimpsonRM
CrossRef
Google scholar
|
[85] |
SoudersCA, BowersSLK, BaudinoTA (2009) Cardiac fibroblast: the renaissance cell.Circ Res105:1164–1176
CrossRef
Google scholar
|
[86] |
StaleyBK, IrvineKD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation.Curr Biol20:1580–1587
CrossRef
Google scholar
|
[87] |
Stoick-CooperCL, MoonRT, WeidingerG (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine.Genes Dev21:1292–1315
CrossRef
Google scholar
|
[88] |
SuT, BondarT, ZhouX, ZhangC, HeH, MedzhitovR (2015) Twosignal requirement for growth-promoting function of Yap in hepatocytes.eLife 4:e02948
CrossRef
Google scholar
|
[89] |
TammC, BöwerN, AnnerénC (2011) Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF.J Cell Sci124:1136–1144
CrossRef
Google scholar
|
[90] |
TaoG, KahrPC, MorikawaY, ZhangM, RahmaniM, HeallenTR, LiL, SunZ, OlsonEN, AmendtBA
CrossRef
Google scholar
|
[91] |
VarelasX, SakumaR, Samavarchi-TehraniP, PeeraniR, RaoBM, DembowyJ, YaffeMB, ZandstraPW, WranaJL (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal.Nat Cell Biol10:837–848
CrossRef
Google scholar
|
[92] |
von GiseA, LinZ, SchlegelmilchK, HonorLB, PanGM, BuckJN, MaQ, IshiwataT, ZhouB, CamargoFD
CrossRef
Google scholar
|
[93] |
WhyteJL, SmithAA, HelmsJA (2012) Wnt Signaling and Injury Repair.Cold Spring Harb Perspect Biol4:409–422
CrossRef
Google scholar
|
[94] |
XinM, KimY, SutherlandLB, QiX, McanallyJ, SchwartzRJ, RichardsonJA, BasseldubyR, OlsonEN (2011) Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size.Sci Signal4:a70
CrossRef
Google scholar
|
[95] |
XinM, KimY, SutherlandLB, MurakamiM, QiX, McAnallyJ, PorrelloER, MahmoudAI, TanW, SheltonJM
CrossRef
Google scholar
|
[96] |
YamamotoS, YangG, ZablockiD, LiuJ, HongC, KimS, SolerS, OdashimaM, ThaiszJ, YehiaG
CrossRef
Google scholar
|
[97] |
YiJ, LuL, YangerK, WangW, SohnBH, StangerBZ, ZhangM, MartinJF, AjaniJA, ChenJ (2016) Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ.Hepatology64:1757–1772
CrossRef
Google scholar
|
[98] |
YimlamaiD, ChristodoulouC, GalliGG, YangerK, Pepe-MooneyB, GurungB, ShresthaK, CahanP, StangerBZ, CamargoFD (2014) Hippo pathway activity influences liver cell fate.Cell157:1324–1338
CrossRef
Google scholar
|
[99] |
YinH, KanastyRL, EltoukhyAA, VegasAJ, DorkinJR, AndersonDG (2014) Non-viral vectors for gene-based therapy.Nat Rev Genet15:541–555
CrossRef
Google scholar
|
[100] |
YinX, MeadBE, SafaeeH, LangerR, KarpJM, LevyO (2016) Engineering stem cell organoids.Cell Stem Cell18:25–38
CrossRef
Google scholar
|
[101] |
YuFX, GuanKL (2013) The Hippo pathway: regulators and regulations.Genes Dev27:355–371
CrossRef
Google scholar
|
[102] |
YuFX, ZhaoB, PanupinthuN, JewellJL, LianI, WangLH, ZhaoJ, YuanH, TumanengK, LiH
CrossRef
Google scholar
|
[103] |
YuFX, LuoJ, MoJS, LiuG, KimYC, MengZ, ZhaoL, PeymanG, OuyangH, JiangW
CrossRef
Google scholar
|
[104] |
YuF, MengZ, PlouffeSW, GuanK (2015a) Hippo pathway regulation of gastrointestinal tissues.Annu Rev Physiol77:201–227
CrossRef
Google scholar
|
[105] |
YuFX, ZhaoB, GuanKL (2015b) Hippo pathway in organ size control, tissue homeostasis, and cancer.Cell163:811–828
CrossRef
Google scholar
|
[106] |
ZhangN, BaiH, DavidKK, DongJ, ZhengY, CaiJ, GiovanniniM, LiuP, AndersRA, PanD (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals.Dev Cell19:27–38
CrossRef
Google scholar
|
[107] |
ZhangH, PasolliHA, FuchsE (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin.Proc Natl Acad Sci USA108:2270–2275
CrossRef
Google scholar
|
[108] |
ZhouD, ConradC, XiaF, ParkJS, PayerB (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene.Cancer Cell16:425–438
CrossRef
Google scholar
|
[109] |
ZhouD, ZhangY, WuH, BarryE, YinY, LawrenceE, DawsonD, WillisJE, MarkowitzSD, CamargoFD
CrossRef
Google scholar
|
[110] |
ZhouQ, LiL, ZhaoB, GuanKL (2015) The Hippo pathway in heart development, regeneration, and diseases.Circ Res116:1431–1447
CrossRef
Google scholar
|
[111] |
ZiM, MaqsoodA, PreharS, MohamedTMA, Abou-LeisaR, RobertsonA, CartwrightEJ, RaySG, OhS, LimDS
CrossRef
Google scholar
|
/
〈 | 〉 |