Genome engineering of stem cell organoids for disease modeling

Yingmin Sun , Qiurong Ding

Protein Cell ›› 2017, Vol. 8 ›› Issue (5) : 315 -327.

PDF (1465KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (5) : 315 -327. DOI: 10.1007/s13238-016-0368-0
REVIEW
REVIEW

Genome engineering of stem cell organoids for disease modeling

Author information +
History +
PDF (1465KB)

Abstract

Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic diseaserelevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

Keywords

pluripotent/adult stem cell / tissue organoid / genome editing / precision medicine

Cite this article

Download citation ▾
Yingmin Sun, Qiurong Ding. Genome engineering of stem cell organoids for disease modeling. Protein Cell, 2017, 8(5): 315-327 DOI:10.1007/s13238-016-0368-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AiharaE, MaheMM, SchumacherMA, MatthisAL, FengR, RenW, NoahTK, Matsu-uraT, MooreSR, HongCI (2015) Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid. Sci Rep5: 17185

[2]

AmabileA, MigliaraA, CapassoP, BiffiM, CittaroD, NaldiniL, LombardoA (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell167:219–232

[3]

BarkerN, HuchM, KujalaP, van de WeteringM, SnippertHJ, van EsJH, SatoT, StangeDE, BegthelH, van den BornM (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell6:25–36

[4]

BartfeldS, BayramT, van de WeteringM, HuchM, BegthelH, KujalaP, VriesR, PetersPJ, CleversH (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology148:126–136

[5]

Ben-ZviD, MeltonDA (2015) Modeling human nutrition using human embryonic stem cells. Cell161:12–17

[6]

BigorgneAE, FarinHF, LemoineR, MahlaouiN, LambertN, GilM, SchulzA, PhilippetP, SchlesserP, AbrahamsenTG (2014) TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest124:328–337

[7]

BojSF, HwangCI, BakerLA, ChioII, EngleDD, CorboV, JagerM, Ponz-SarviseM, TiriacH, SpectorMS (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell160:324–338

[8]

CanverMC, SmithEC, SherF, PinelloL, SanjanaNE, ShalemO, ChenDD, SchuppPG, VinjamurDS, GarciaSP (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature527:192–197

[9]

ChenB, GilbertLA, CiminiBA, SchnitzbauerJ, ZhangW, LiGW, ParkJ, BlackburnEH, WeissmanJS, QiLS (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell155:1479–1491

[10]

ChenS, SanjanaNE, ZhengK, ShalemO, LeeK, ShiX, ScottDA, SongJ, PanJQ, WeisslederR (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell160:1246–1260

[11]

ChengAW, WangH, YangH, ShiL, KatzY, TheunissenTW, RangarajanS, ShivalilaCS, DadonDB, JaenischR (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res23:1163–1171

[12]

ChuaCW, ShibataM, LeiM, ToivanenR, BarlowLJ, BergrenSK, BadaniKK, McKiernanJM, BensonMC, HibshooshH (2014) Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol16:951–961

[13]

CollinsFS, VarmusH (2015) A new initiative on precision medicine. N Engl J Med372:793–795

[14]

DekkersJF, WiegerinckCL, de JongeHR, BronsveldI, JanssensHM, de Winter-de GrootKM, BrandsmaAM, de JongNW, BijveldsMJ, ScholteBJ (2013) A functional CFTR assay using primary cystic fiborsis intestinal organoids. Nat Med19:939–945

[15]

DeWardAD, CramerJ, LagasseE (2014) Celluar heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep9:701–711

[16]

DingQ, LeeYK, SchaeferEA, PetersDT, VeresA, KimK, KuperwasserN, MotolaDL, MeissnerTB, HendriksWT (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell12:238–251

[17]

DrostJ, van JaarsveldRH, PonsioenB, ZimberlinC, van BoxtelR, BuijsA, SachsN, OvermeerRM, OfferhausGJ, BegthelH (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature521:43–47

[18]

DyeBR, HillDR, FergusonMA, TsaiYH, NagyMS, DyalR, WellsJM, MayhewCN, NattivR, KleinOD (2015) In vitro generation of human pluripotent stem cell derived lung organoids. Elife. doi:10.7554/eLife.05098

[19]

EirakuM, WatanabeK, Matsuo-TakasakiM, KawadaM, YonemuraS, MatsumuraM, WatayaT, NishiyamaA, MugurumaK, SasaiY (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell3:519–532

[20]

EirakuM, TakataN, IshibashiH, KawadaM, SakakuraE, OkudaS, SekiguchiK, AdachiT, SasaiY (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature472:51–56

[21]

ForbesterJL, GouldingD, VallierL, HannanN, HaleC, PickardD, MukhopadhyayS, DouganG (2015) Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun83:2926–2934

[22]

GaoD, VelaI, SbonerA, IaquintaPJ, KarthausWR, GopalanA, DowlingC, WanjalaJN, UndvallEA, AroraVK (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell159:176–187

[23]

GaspardN, BouschetT, HourezR, DimidschsteinJ, NaeijeG, van den AmeeleJ, Espuny-CamachoI, HerpoelA, PassanteL, SchiffmannSN (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature455:351–357

[24]

GilbertLA, LarsonMH, MorsutL, LiuZ, BrarGA, TorresSE, Stern-GinossarN, BrandmanO, WhiteheadEH, DoudnaJA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell154:442–451

[25]

GilbertLA, HorlbeckMA, AdamsonB, VillaltaJE, ChenY, WhiteheadEH, GuimaraesC, PanningB, PloeghHL, BassikMC (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell159:647–661

[26]

HiltonIB, D’IppolitoAM, VockleyCM, ThakorePI, CrawfordGE, ReddyTE, GersbachCA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol33:510–517

[27]

HishaH, TanakaT, KannoS, TokuyamaY, KomaiY, OheS, YanaiH, OmachiT, UenoH (2013) Establishment of a novel lingual organoid culture system: generation of organoids having mature keratinized epithelium from adult epithelial stem cells. Sci Rep3:3224

[28]

HsuPD, LanderES, ZhangF (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell157:1262–1278

[29]

HuchM, BonfantiP, BojSF, SatoT, LoomansCJ, van de WeteringM, SojoodiM, LiVS, SchuijersJ, GracaninA (2013a) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J32:2708–2721

[30]

HuchM, DorrellC, BojSF, van EsJH, LiVS, van de WeteringM, SatoT, HamerK, SasakiN, FinegoldMJ (2013b) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature494:247–250

[31]

HuchM, GehartH, van BoxtelR, HamerK, BlokzijlF, VerstegenMM, EllisE, van WenumM, FuchsSA, de LigtJ (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell160:299–312

[32]

JainIH, ZazzeronL, GoliR, AlexaK, Schatzman-BoneS, DhillonH, GoldbergerO, PengJ, ShalemO, SanjanaNE (2016) Hypoxia as a therapy for mitochondrial disease. Science 352:54–61

[33]

JungP, SatoT, Merlos-SuárezA, BarrigaFM, IglesiasM, RossellD, AuerH, GallardoM, BlascoMA, SanchoE (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med17:1225–1227

[34]

KarthausWR, IaquintaPJ, DrostJ, GracaninA, van BoxtelR, WongvipatJ, DowlingCM, GaoD, BegthelH, SachsN (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell159:163–175

[35]

KearnsNA, PhamH, TabakB, GengaRM, SilversteinNJ, GarberM, MaehrR (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods12:401–403

[36]

KoehlerKR, HashinoE (2014) 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc9:1229–1244

[37]

KoehlerKR, MikoszAM, MoloshAI, PatelD, HashinoE (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature500:217–221

[38]

Koike-YusaH, LiY, TanEP, Velasco-Herrera MdelC, YusaK (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol32:267–273

[39]

KomorAC, KimYB, PackerMS, ZurisJA, LiuDR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature533:420–424

[40]

KonermannS, BrighamMD, TrevinoAE, JoungJ, AbudayyehOO, BarcenaC, HsuPD, HabibN, GootenbergJS, NishimasuH (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature517:583–588

[41]

KubbenN, ZhangW, WangL, VossTC, YangJ, QuJ, LiuGH, MisteliT (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell165:1361–1374

[42]

LancasterMA, KnoblichJA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc9:2329–2340

[43]

LancasterMA, RennerM, MartinCA, WenzelD, BicknellLS, HurlesME, HomfrayT, PenningerJM, JacksonAP, KnoblichJA (2013) Cerebral organoids model human brain development and microcephaly. Nature501:373–379

[44]

LeeJH, BhangDH, BeedeA, HuangTL, StrippBR, BlochKD, WagersAJ, TsengYH, RyeomS, KimCF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell156:440–455

[45]

LeslieJL, HuangS, OppJS, NagyMS, KobayashiM, YoungVB, SpenceJR (2015) Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun83:138–145

[46]

LiY, ZhangW, ChangL, HanY, SunL, GongX, TangH, LiuZ, DengH, YeY (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell7:478–488

[47]

LiuGH, SuzukiK, QuJ, Sancho-MartinezI, YiF, LiM, KumarS, NivetE, KimJ, SoligallaRD (2011) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell8:688–694

[48]

MaH, TuLC, NaseriA, HuismanM, ZhangS, GrunwaldD, PedersonT (2016a) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol34:528–530

[49]

MaY, ZhangJ, YinW, ZhangZ, SongY, ChangX (2016b) Targeted AID-mediated mutagenesis(TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. doi:10.1038/nmeth.4027

[50]

MarianiJ, SimoniniMV, PalejevD, TomasiniL, CoppolaG, SzekelyAM, HorvathTL, VaccarinoFM (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Nati Acad Sci USA109:12770–12775

[51]

MarianiJ, CoppolaG, ZhangP, AbyzovA, ProviniL, TomasiniL, AmenduniM, SzekelyA, PalejevD, WilsonM (2015) FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation of autism spectrum disorders. Cell162:375–390

[52]

MaschmeyerI, LorenzAK, SchimekK, HasenbergT, RammeAP, HübnerJ, LindnerM, DrewellC, BauerS, ThomasA (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip15:2688–2699

[53]

MatanoM, DateS, ShimokawaM, TakanoA, FujiiM, OhtaY, WatanabeT, KanaiT, SatoT (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med21:256–262

[54]

McCrackenKW, HowellJC, WellsJM, SpenceJR (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc6:1920–1928

[55]

McCrackenKW, CatáEM, CrawfordCM, SinagogaKL, SchumacherM, RockichBE, TsaiYH, MayhewCN, SpenceJR, ZavrosY (2014) Modeling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature516:400–404

[56]

MondrinosMJ, KoutzakiS, JiwanmallE, LiM, DechadarevianJP, LelkesPI, FinckCM (2006) Engineering three-dimensional pulmonary tissue constructs. Tissue Eng12:717–728

[57]

MondrinosMJ, JonesPL, FinckCM, LelkesPI (2014) Engineering de novo assembly of fetal pulmonary organoids. Tissue Eng Part A20:2892–2907

[58]

MugurumaK, NishiyamaA, OnoY, MiyawakiH, MizuharaE, HoriS, KakizukaA, ObataK, YanagawaY, HiranoT (2010) Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci13:1171–1180

[59]

MugurumaK, NishiyamaA, KawakamiH, HashimotoK, SasaiY (2015) Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep10:537–550

[60]

MusunuruK (2013) Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech6:896–904

[61]

NanduriLS, BaanstraM, FaberH, RocchiC, ZwartE, de HaanG, van OsR, CoppesRP (2014) Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Reports3:957–964

[62]

NellesDA, FangMY, O’ConnellMR, XuJL, MarkmillerSJ, DoudnaJA, YeoGW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell165:488–496

[63]

NishidaK, ArazoeT, YachieN, BannoS, KakimotoM, TabataM, MochizukiM, MiyabeA, ArakiM, HaraKY (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. doi:10.1126/science.aaf8729

[64]

NoguchiTK, NinomiyaN, SekineM, KomazakiS, WangPC, AsashimaM, KurisakiA (2015) Generation of stomch tissue from mosue embryonic stem cell. Nat Cell Biol17:984–993

[65]

OgawaM, OgawaS, BearCE, AhmadiS, ChinS, LiB, GrompeM, KellerG, KamathBM, GhanekarA (2015) Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol33:853–861

[66]

OotaniA, LiX, SangiorgiE, HoQT, UenoH, TodaS, SugiharaH, FujimotoK, WeissmanIL, CapecchiMR (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med15:701–706

[67]

OzoneC, SugaH, EirakuM, KadoshimaT, YonemuraS, TakataN, OisoY, TsujiT, SasaiY (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun7:10351

[68]

ParnasO, JovanovicM, EisenhaureTM, HerbstRH, DixitA, YeCJ, PrzybylskiD, PlattRJ, TiroshI, SanjanaNE (2015) A Genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell162:675–686

[69]

Perez-PineraP, KocakDD, VockleyCM, AdlerAF, KabadiAM, PolsteinLR, ThakorePI, GlassKA, OusteroutDG, LeongKW (2013a) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods10:973–976

[70]

Perez-PineraP, OusteroutDG, BrungerJM, FarinAM, GlassKA, GuilakF, CrawfordGE, HarteminkAJ, GersbachCA (2013b) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods10:239–242

[71]

QiLS, LarsonMH, GilbertLA, DoudnaJA, WeissmanJS, ArkinAP, LimWA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell152:1173–1183

[72]

QianX, NguyenHN, SongMM, HadionoC, OgdenSC, HammackC, YaoB, HamerskyGR, JacobF, ZhongC (2016) Brainregion-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell165:1238–1254

[73]

RenW, LewandowskiBC, WatsonJ, AiharaE, IwatsukiK, BachmanovAA, MargolskeeRF, JiangP (2014) Single Lgr5- or Lgr6- expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA111:16401–16406

[74]

SampaziotisF, Cardoso de BritoM, MadrigalP, BerteroA, Saeb-ParsyK, SoaresFA, SchrumpfE, MelumE, KarlsenTH, BradleyJA (2015) Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol33:845–852

[75]

SanjanaNE, WrightJ, ZhengK, ShalemO, FontanillasP, JoungJ, ChengC, RegevA, ZhangF (2016) High-resolution interrogation of functional elements in the noncoding genome. Science353:1545–1549

[76]

SatoT, VriesRG, SnippertHJ, van de WeteringM, BarkerN, StangeDE, van EsJH, AboA, KujalaP, PetersPJ (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature459:262–265

[77]

SatoT, StangeDE, FerranteM, VriesRG, Van EsJH, Van den BrinkS, Van HoudtWJ, PronkA, Van GorpJ (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology141:1762–1772

[78]

SchlaermannP, ToelleB, BergerH, SchmidtSC, GlanemannM, OrdemannJ, BartfeldS, MollenkopfHJ, MeyerTF (2016) A novel human gastric primary cell culture system for modeling Helicobacter pylori infection in vitro. Gut65:201–213

[79]

SchmidtJC, ZaugAJ, CechTR (2016) Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell166:1188–1197

[80]

SchweigerPJ, JensenKB (2016) Modeling human disease using organotypic cultures. Curr Opin Cell Biol43:22–29

[81]

ShalemO, SanjanaNE, HartenianE, ShiX, ScottDA, MikkelsenTS, HecklD, EbertBL, RootDE, DoenchJG (2014) Genomescale CRISPR-Cas9 knockout screening in human cells. Science343:84–87

[82]

ShiJ, ZhaoY, WangK, ShiX, WangY, HuangH, ZhuangY, CaiT, WangF, ShaoF (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature526:660–665

[83]

SpenceJR, MayhewCN, RankinSA, KuharMF, VallanceJE, TolleK, HoskinsEE, KalinichenkoVV, WellsSI, ZornAM (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature470:105–109

[84]

StangeDE, KooBK, HuchM, SibbelG, BasakO, LyubimovaA, KujalaP, BartfeldS, KosterJ, GeahlenJH (2013) Differentiated Troy+ chife cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell155:357–368

[85]

SugaH, KadoshimaT, MinaguchiM, OhgushiM, SoenM, NakanoT, TakataN, WatayaT, MugurumaK, MiyoshiH (2011) Selfformation of functional adenohypophysis in three-dimensional culture. Nature480:57–62

[86]

TakahashiK, TanabeK, OhnukiM, NaritaM, IchisakaT, TomodaK, YamanakaS (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131:861–872

[87]

TakasatoM, ErPX, ChiuHS, MaierB, BaillieGJ, FergusonC, PartonRG, WolvetangEJ, RoostMS, de SousaChuva, LopesSM (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature526:564–568

[88]

TakebeT, SekineK, EnomuraM, KoikeH, KimuraM, OgaeriT, ZhangRR, UenoY, ZhengYW, KoikeN (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature499:481–484

[89]

TakebeT, ZhangRR, KoikeH, KimuraM, YoshizawaE, EnomuraM, KoikeN, SekineK, TaniguchiH (2014) Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc9:396–409

[90]

ThakorePI, D’IppolitoAM, SongL, SafiA, ShivakumarNK, KabadiAM, ReddyTE, CrawfordGE, GersbachCA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods12:1143–1149

[91]

van de WeteringM, FranciesHE, FrancisJM, BounovaG, IorioF, PronkA, van HoudtW, van GorpJ, Taylor-WeinerA, KesterL (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell161:933–945

[92]

ViscontiRP, KasyanovV, GentileC, ZhangJ, MarkwaldRR, MironovV (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther10:409–420

[93]

WangF, QiLS (2016) Applications of CRISPR genome engineering in cell biology. Trends Cell Biol26:875–888

[94]

WangT, WeiJJ, SabatiniDM, LanderES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science343:80–84

[95]

WangX, YamamotoY, WilsonLH, ZhangT, HowittBE, FarrowMA, KernF, NingG, HongY, KhorCC (2015) Cloning and variation of ground state intestinal stem cells. Nature522:173–178

[96]

WatsonCL, MaheMM, MúneraJ, HowellJC, SundaramN, PolingHM, SchweitzerJI, VallanceJE, MayhewCN, SunY (2014) An in vivo model of human small intestine using pluripotent stem cells. Nat Med20:1310–1314

[97]

WilsonSS, TocchiA, HollyMK, ParksWC, SmithJG (2015) A small intestinal organoid model of non-invasive enteric pathogenepithelial cell interactions. Mucosal Immunol8:352–361

[98]

WorkmanMJ, MaheMM, TrisnoS, PolingHM, WatsonCL, SundaramN, ChangCF, SchiesserJ, AubertP, StanleyEG (2016) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. doi: 10.1038/nm.4233

[99]

WroblewskiLE, PiazueloMB, ChaturvediR, SchumacherM, AiharaE, FengR, NotoJM, DelgadoA, IsraelDA, ZavrosY (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut64:720–730

[100]

YinX, FarinHF, van EsJH, CleversH, LangerR, KarpJM (2014) Niche-independent high-purify cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods11:106–112

[101]

YinX, MeadBE, SafaeeH, LangerR, KarpJM, LevyO (2016) Engieering stem cell organoids. Cell Stem Cell18:25–38

[102]

YuJ, VodyanikMA, Smuga-OttoK, Antosiewicz-BourgetJ, FraneJL, TianS, NieJ, JonsdottirGA, RuottiV, StewartR (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science318:1917–1920

[103]

ZhangYG, WuS, XiaY, SunJ (2014) Salmonella-infected cryptderived intestinal organoid culture system for host-bacterial interactions. Physiol Rep2(9):e12147

[104]

ZhangW, LiJ, SuzukiK, QuJ, WangP, ZhouJ, LiuX, RenR, XuX, OcampoA (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science348:1160–1163

[105]

ZhouY, ZhuS, CaiC, YuanP, LiC, HuangY, WeiW (2014) Highthroughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature509:487–491

[106]

ZhuS, LiW, LiuJ, ChenCH, LiaoQ, XuP, XuH, XiaoT, CaoZ, PengJ (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guided RNA CRISPRCas9 library. Nat Biotechnol. doi: 10.1038/nbt.3715

RIGHTS & PERMISSIONS

The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (1465KB)

950

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/