IL-25 blockade inhibits metastasis in breast cancer
Zhujun Jiang, Jingtao Chen, Xuemei Du, Hang Cheng, Xiaohu Wang, Chen Dong
IL-25 blockade inhibits metastasis in breast cancer
Metastasis is the leading cause of death in breast cancer patients. However, the mechanisms underlying metastasis are not well understood and there is no effective treatment in the clinic. Here, we demonstrate that in MMTVPyMT, a highly malignant spontaneous breast tumor model, IL-25 (also called IL-17E) was expressed by tumorinfiltrating CD4+ T cells and macrophages. An IL-25 neutralization antibody, while not affecting primary tumor growth, substantially reduced lung metastasis. Inhibition of IL-25 resulted in decreased type 2 T cells and macrophages in the primary tumor microenvironments, both reported to enhance breast tumor invasion and subsequent metastasis to the lung. Taken together, our data suggest IL-25 blockade as a novel treatment formetastatic breast tumor.
IL-25 / breast cancer / metastasis / MMTVPyMT
[1] |
Angkasekwinai P, Park H, Wang YH, Wang YH, Chang SH, Corry DB, Liu YJ, Zhu Z, Dong C (2007) Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 204:1509–1517
CrossRef
Google scholar
|
[2] |
Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C (2010) Regulation of IL-9 expression by IL-25 signaling. Nat Immunol 11:250–256
CrossRef
Google scholar
|
[3] |
Angkasekwinai P, Srimanote P, Wang YH, Pootong A, Sakolvaree Y, Pattanapanyasat K, Chaicumpa W, Chaiyaroj S, Dong C (2013) Interleukin-25 (IL-25) promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigenspecific IL-9 response. Infect Immun 81:3731–3741
CrossRef
Google scholar
|
[4] |
Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40
CrossRef
Google scholar
|
[5] |
Barlow JL, McKenzie AN (2009) IL-25: a key requirement for the regulation of type-2 immunity. Biofactors 35:178–182
CrossRef
Google scholar
|
[6] |
Benatar T, Cao MY, Lee Y, Lightfoot J, Feng NP, Gu XP, Lee V, Jin HN, Wang M, Wright JA
CrossRef
Google scholar
|
[7] |
Cao Q, Wang C, Zheng D, Wang Y, Lee VW, Wang YM, Zheng G, Tan TK, Yu D, Alexander SI
CrossRef
Google scholar
|
[8] |
Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572
CrossRef
Google scholar
|
[9] |
Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumorpromoting chronic inflammation: a magic bullet? Science 339:286–291
CrossRef
Google scholar
|
[10] |
D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A
CrossRef
Google scholar
|
[11] |
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102
CrossRef
Google scholar
|
[12] |
Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390
CrossRef
Google scholar
|
[13] |
Duan W, Mehta AK, Magalhaes JG, Ziegler SF, Dong C, Philpott DJ, Croft M (2010) Innate signals from Nod2 block respiratory tolerance and program T(H)2-driven allergic inflammation. J Allergy Clin Immunol 126(1284–1293):e1210
CrossRef
Google scholar
|
[14] |
Fahy JV (2015) Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol 15:57–65
CrossRef
Google scholar
|
[15] |
Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R
CrossRef
Google scholar
|
[16] |
Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumorassociated macrophages. Science 344:921–925
CrossRef
Google scholar
|
[17] |
Furuta S, Jeng YM, Zhou L, Huang L, Kuhn I, Bissell MJ, Lee WH (2011) IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells. Sci Transl Med 3:78ra31
CrossRef
Google scholar
|
[18] |
Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Investig 114:623–633
CrossRef
Google scholar
|
[19] |
Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24:241–255
CrossRef
Google scholar
|
[20] |
Guy CT, Cardiff RD, Muller WJ (1992a) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961
CrossRef
Google scholar
|
[21] |
Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992b) Expression of the Neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89:10578–10582
CrossRef
Google scholar
|
[22] |
Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM, Chen Q, Sajjan US, Hershenson MB (2014) Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol 134:429–439
CrossRef
Google scholar
|
[23] |
Huang CK, Yang CY, Jeng YM, Chen CL, Wu HH, Chang YC, Ma C, Kuo WH, Chang KJ, Shew JY
CrossRef
Google scholar
|
[24] |
Kaiko GE, Phipps S, Angkasekwinai P, Dong C, Foster PS (2010) NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. J Immunol 185:4681–4690
CrossRef
Google scholar
|
[25] |
Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86
CrossRef
Google scholar
|
[26] |
Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP (2005) Profile of immune cells in axillary lymph nodes predicts diseasefree survival in breast cancer. PLoS Med 2:e284
CrossRef
Google scholar
|
[27] |
Licona-Limon P, Kim LK, Palm NW, Flavell RA (2013) TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14:536–542
CrossRef
Google scholar
|
[28] |
Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colonystimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740
CrossRef
Google scholar
|
[29] |
Lin EY, Jones JG, Li P, Zhu UY, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126
CrossRef
Google scholar
|
[30] |
Lin SCJ, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li AH, Kang KW, Frank SA, Lee WH, Lee EYHP (2004) Somatic mutation of p53 leads to estrogen receptor alpha-positive and –negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64:3525–3532
CrossRef
Google scholar
|
[31] |
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246
CrossRef
Google scholar
|
[32] |
Maglione JE, Moghanaki D, Young LJT, Manner CK, Ellies LG, Joseph SO, Nicholson B, Cardiff RD, MacLeod CL (2001) Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res 61:8298–8305
|
[33] |
Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444
CrossRef
Google scholar
|
[34] |
McCormack SJ, Weaver Z, Deming S, Natarajan G, Torri J, Johnson MD, Liyanage M, Ried T, Dickson RB (1998) Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16:2755–2766
CrossRef
Google scholar
|
[35] |
Mombelli S, Cochaud S, Merrouche Y, Garbar C, Antonicelli F, Laprevotte E, Alberici G, Bonnefoy N, Eliaou JF, Bastid J
CrossRef
Google scholar
|
[36] |
Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, Innocent N, Cardiff RD, Schnall MD, Chodosh LA (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2:451–461
CrossRef
Google scholar
|
[37] |
Nielsen LL, Discafani CM, Gurnani M, Tyler RD (1991) Histopathology of salivary and mammary-gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res 51:3762–3767
|
[38] |
Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61
CrossRef
Google scholar
|
[39] |
Pedroza-Gonzalez A, Xu K, Wu TC, Aspord C, Tindle S, Marches F, Gallegos M, Burton EC, Savino D, Hori T, Tanaka Y (2011) Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J Exp Med 208:479–490
CrossRef
Google scholar
|
[40] |
Prat A, Fan C, Fernandez A, Hoadley KA, Martinello R, Vidal M, Viladot M, Pineda E, Arance A, Munoz M
CrossRef
Google scholar
|
[41] |
Rizzo A, Monteleone I, Fina D, Stolfi C, Caruso R, Fantini MC, Franze E, Schwendener R, Pallone F, Monteleone G (2012) Inhibition of colitis by IL-25 associates with induction of alternatively activated macrophages. Inflamm Bowel Dis 18:449–459
CrossRef
Google scholar
|
[42] |
Siegle JS, Hansbro N, Dong C, Angkasekwinai P, Foster PS, Kumar RK (2011) Blocking induction of T helper type 2 responses prevents development of disease in a model of childhood asthma. Clin Exp Immunol 165:19–28
CrossRef
Google scholar
|
[43] |
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS
CrossRef
Google scholar
|
[44] |
Stolfi C, Caruso R, Franze E, Sarra M, De Nitto D, Rizzo A, Pallone F, Monteleone G (2011) Interleukin-25 fails to activate STAT6 and induce alternatively activatedmacrophages. Immunology 132:66–77
CrossRef
Google scholar
|
[45] |
Swaidani S, Bulek K, Kang Z, Gulen MF, Liu C, Yin W, Abbadi A, Aronica M, Li X (2011) T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation. J Immunol 187:3155–3164
CrossRef
Google scholar
|
[46] |
Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary-gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625
CrossRef
Google scholar
|
[47] |
Van Dyken SJ, Locksley RM (2013) Interleukin-4-and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annual Review of Immunology 31(31):317–343
CrossRef
Google scholar
|
[48] |
Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182
CrossRef
Google scholar
|
[49] |
Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B
CrossRef
Google scholar
|
[50] |
Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC, Chen CL, Shew JY, Lee EYHP, Jeng YM, Tien YW
CrossRef
Google scholar
|
[51] |
Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G
CrossRef
Google scholar
|
/
〈 | 〉 |