Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance
Yingjiao Xue, Shenda Hou, Hongbin Ji, Xiangkun Han
Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance
Lung cancer is the leading cause of cancer-related deaths worldwide. Targeted therapy is beneficial in most cases, but the development of drug resistance stands as an obstacle to good prognosis. Multiple mechanisms were explored such as genetic alterations, activation of bypass signaling, and phenotypic transition. These intrinsic and/or extrinsic dynamic regulations facilitate tumor cell survival in meeting the demands of signaling under different stimulus. This review introduces lung cancer plasticity and heterogeneity and their correlation with drug resistance. While cancer plasticity and heterogeneity play an essential role in the development of drug resistance, the manipulation of them may bring some inspirations to cancer prognosis and treatment. That is to say, lung cancer plasticity and heterogeneity present us with not only challenges but also opportunities.
lung cancer / plasticity / heterogeneity / drug resistance / phenotypic transition
[1] |
Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S
CrossRef
Google scholar
|
[2] |
Bischof AG, Yuksel D, Mammoto T, Mammoto A, Krause S, Ingber DE (2013) Breast cancer normalization induced by embryonic mesenchyme is mediated by extracellular matrix biglycan. Integr Biol (Camb) 5:1045–1056
CrossRef
Google scholar
|
[3] |
Brock A, Krause S, Ingber DE (2015) Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer 15:499–509
CrossRef
Google scholar
|
[4] |
Calikusu Z, Yildirim Y, Akcali Z, Sakalli H, Bal N, Unal I, Ozyilkan O (2009) The effect of HER2 expression on cisplatin-based chemotherapy in advanced non-small cell lung cancer patients. J Exp Clin Cancer Res 28:97
CrossRef
Google scholar
|
[5] |
Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K
CrossRef
Google scholar
|
[6] |
Cheng J, Qi J, Li XT, Zhou K, Xu JH, Zhou Y, Zhang GQ, Xu JP, Zhou RJ (2015) ATRA and Genistein synergistically inhibit the metastatic potential of human lung adenocarcinoma cells. Int J Clin Exp Med 8:4220–4227
|
[7] |
Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H
CrossRef
Google scholar
|
[8] |
Ciardiello F (2000) Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 60(Suppl 1) 25–32; discussion 41–22
CrossRef
Google scholar
|
[9] |
Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P
CrossRef
Google scholar
|
[10] |
Denis MG, Vallee A, Theoleyre S (2015) EGFR T790M resistance mutation in non small-cell lung carcinoma. Clin Chim Acta 444:81–85
CrossRef
Google scholar
|
[11] |
Dibben SM, Holt RJ, Davison TS, Wilson CL, Taylor J, Paul I, McManus K, Kelly PJ, Proutski V, Harkin DP
CrossRef
Google scholar
|
[12] |
Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA
CrossRef
Google scholar
|
[13] |
Engelman JA, Janne PA (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 14:2895–2899
CrossRef
Google scholar
|
[14] |
Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J
CrossRef
Google scholar
|
[15] |
Frederick BA, Helfrich BA, Coldren CD, Zheng D, Chan D, Bunn PA Jr, Raben D (2007) Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 6:1683–1691
CrossRef
Google scholar
|
[16] |
Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V, Chao TY, Nakagawa K, Chu DT, Saijo N
CrossRef
Google scholar
|
[17] |
Gao Y, Zhang W, Han X, Li F, Wang X, Wang R, Fang Z, Tong X, Yao S, Li F
CrossRef
Google scholar
|
[18] |
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P
CrossRef
Google scholar
|
[19] |
Greve G, Schiffmann I, Lubbert M (2015) Epigenetic priming of nonsmall cell lung cancer cell lines to the antiproliferative and differentiating effects of all-trans retinoic acid. J Cancer Res Clin Oncol 141:2171–2180
CrossRef
Google scholar
|
[20] |
Guan DX, Shi J, Zhang Y, Zhao JS, Long LY, Chen TW, Zhang EB, Feng YY, Bao WD, Deng YZ
CrossRef
Google scholar
|
[21] |
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659
CrossRef
Google scholar
|
[22] |
Gurden MD, Westwood IM, Faisal A, Naud S, Cheung KM, McAndrew C, Wood A, Schmitt J, Boxall K, Mak G
CrossRef
Google scholar
|
[23] |
Han X, Li F, Fang Z, Gao Y, Li F, Fang R, Yao S, Sun Y, Li L, Zhang W
CrossRef
Google scholar
|
[24] |
Hashida S, Yamamoto H, Shien K, Miyoshi Y, Ohtsuka T, Suzawa K, Watanabe M, Maki Y, Soh J, Asano H
CrossRef
Google scholar
|
[25] |
Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka YE, Ji F, Bhang HC, Krishnamurthy Radhakrishna V
CrossRef
Google scholar
|
[26] |
Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin WA (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807
CrossRef
Google scholar
|
[27] |
Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276
CrossRef
Google scholar
|
[28] |
Hofmann HS, Knolle J, Neef H (1994) The adenosquamous lung carcinoma: clinical and pathological characteristics. J Cardiovasc Surg (Torino) 35:543–547
|
[29] |
Hsieh MS, Jhuang JY, Hua SF, Chou YH (2015) Histologic evolution from adenocarcinoma to squamous cell carcinoma after gefitinib treatment. Ann Thorac Surg 99:316–319
CrossRef
Google scholar
|
[30] |
Iams WT, Lovly CM (2015) Anaplastic lymphoma kinase as a therapeutic target in non-small cell lung cancer. Cancer J 21:378–382
CrossRef
Google scholar
|
[31] |
Ichinokawa H, Ishii G, Nagai K, Yoshida J, Nishimura M, Hishida T, Suzuki K, Ochiai A (2011) Clinicopathological characteristics of primary lung adenocarcinoma predominantly composed of goblet cells in surgically resected cases. Pathol Int 61:423–429
CrossRef
Google scholar
|
[32] |
Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248
CrossRef
Google scholar
|
[33] |
Jeong SH, Jung JH, Han JH, Kim JH, Choi YW, Lee HW, Kang SY, Hwang YH, Ahn MS, Choi JH
CrossRef
Google scholar
|
[34] |
Kang SM, Kang HJ, Shin JH, Kim H, Shin DH, Kim SK, Kim JH, Chung KY, Kim SK, Chang J (2007) Identical epidermal growth factor receptor mutations in adenocarcinomatous and squamous cell carcinomatous components of adenosquamous carcinoma of the lung. Cancer 109:581–587
CrossRef
Google scholar
|
[35] |
Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C
CrossRef
Google scholar
|
[36] |
Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF, Iafrate AJ, Takeuchi K, Taiji M, Okuno Y
CrossRef
Google scholar
|
[37] |
Key J, Kim YS, Tatulli F, Palange AL, O’Neill B, Aryal S, Ramirez M, Liu X, Ferrari M, Munden R
CrossRef
Google scholar
|
[38] |
Kim ES, Tang X, Peterson DR, Kilari D, Chow CW, Fujimoto J, Kalhor N, Swisher SG, Stewart DJ, Wistuba II
CrossRef
Google scholar
|
[39] |
Kim HJ, Lee KY, Kim YW, Choi YJ, Lee JE, Choi CM, Baek IJ, Rho JK, Lee JC (2015) P-glycoprotein confers acquired resistance to 17-DMAG in lung cancers with an ALK rearrangement. BMC Cancer 15:553
CrossRef
Google scholar
|
[40] |
Kong FF, Zhu YL, Yuan HH, Wang JY, Zhao M, Gong XD, Liu F, Zhang WY, Wang CR, Jiang B (2014) FOXM1 regulated by ERK pathway mediates TGF-beta1-induced EMT in NSCLC. Oncol Res 22:29–37
CrossRef
Google scholar
|
[41] |
Krause S, Maffini MV, Soto AM, Sonnenschein C(2010) The microenvironment determines the breast cancer cells’ phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer 10:263
CrossRef
Google scholar
|
[42] |
Kuiper JL, Ronden MI, Becker A, Heideman DA, van Hengel P, Ylstra B, Thunnissen E, Smit EF (2015) Transformation to a squamous cell carcinoma phenotype of an EGFR-mutated NSCLC patient after treatment with an EGFR-tyrosine kinase inhibitor. J Clin Pathol 68:320–321
CrossRef
Google scholar
|
[43] |
Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233:1560–1570
CrossRef
Google scholar
|
[44] |
Li B, Gao MH, Lv CY, Yang P, Yin QF (2015a) Study of the synergistic effects of all-transretinoic acid and C-phycocyanin on the growth and apoptosis of A549 cells. Eur J Cancer Prev 25:97–101
CrossRef
Google scholar
|
[45] |
Li F, Han X, Li F, Wang R, Wang H, Gao Y, Wang X, Fang Z, Zhang W, Yao S
CrossRef
Google scholar
|
[46] |
Lovly CM, McDonald NT, Chen H, Ortiz-Cuaran S, Heukamp LC, Yan Y, Florin A, Ozretic L, Lim D, Wang L
CrossRef
Google scholar
|
[47] |
Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59:168–179
CrossRef
Google scholar
|
[48] |
Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117
CrossRef
Google scholar
|
[49] |
Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM
CrossRef
Google scholar
|
[50] |
Merrill RA, Ahrens JM, Kaiser ME, Federhart KS, Poon VY, Clagett-Dame M (2004) All-trans retinoic acid-responsive genes identified in the human SH-SY5Y neuroblastoma cell line and their regulated expression in the nervous system of early embryos. Biol Chem 385:605–614
CrossRef
Google scholar
|
[51] |
Miller VA, Kris MG, Shah N, Patel J, Azzoli C, Gomez J, Krug LM, Pao W, Rizvi N, Pizzo B
CrossRef
Google scholar
|
[52] |
Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72:3585–3589
CrossRef
Google scholar
|
[53] |
Morinaga R, Okamoto I, Furuta K, Kawano Y, Sekijima M, Dote K, Satou T, Nishio K, Fukuoka M, Nakagawa K (2007) Sequential occurrence of non-small cell and small cell lung cancer with the same EGFR mutation. Lung Cancer 58:411–413
CrossRef
Google scholar
|
[54] |
Moro M, Bertolini G, Pastorino U, Roz L, Sozzi G (2015) Combination treatment with all-trans retinoic acid prevents cisplatininduced enrichment of CD133+ tumor-initiating cells and reveals heterogeneity of cancer stem cell compartment in lung cancer. J Thorac Oncol 10:1027–1036
CrossRef
Google scholar
|
[55] |
Nakanishi Y, Kawasaki M, Bai F, Takayama K, Pei XH, Takano K, Inoue K, Osaki S, Hara N, Kiyohara C (1999) Expression of p53 and glutathione S-transferase-pi relates to clinical drug resistance in non-small cell lung cancer. Oncology 57:318–323
CrossRef
Google scholar
|
[56] |
Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR, Katayama R, Costa C, Ross KN, Moran T
CrossRef
Google scholar
|
[57] |
Norkowski E, Ghigna MR, Lacroix L, Le Chevalier TFadel E, Dartevelle P, Dorfmuller P, Thomas de Montpreville V, (2013) Small-cell carcinoma in the setting of pulmonary adenocarcinoma: new insights in the era of molecular pathology. J Thorac Oncol 8:1265–1271
CrossRef
Google scholar
|
[58] |
Nurwidya F, Takahashi F, Murakami A, Takahashi K (2012) Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat 44:151–156
CrossRef
Google scholar
|
[59] |
Oh JE, An CH, Yoo NJ, Lee SH (2011) Detection of low-level EGFR T790M mutation in lung cancer tissues. APMIS 119:403–411
CrossRef
Google scholar
|
[60] |
Olaussen KA, Postel-Vinay S (2016) Predictors of chemotherapy efficacy in Non-Small Cell Lung Cancer: a challenging landscape. Ann Oncol mdw321
CrossRef
Google scholar
|
[61] |
Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73
CrossRef
Google scholar
|
[62] |
Park DH, Jeon HS, Lee SY, Choi YY, Lee HW, Yoon S, Lee JC, Yoon YS, Kim DS, Na MJ
CrossRef
Google scholar
|
[63] |
Perez-Ramirez C, Canadas-Garre M, Jimenez-Varo E, Faus-Dader MJ, Calleja-Hernandez MA (2015) MET: a new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics 16:631–647
CrossRef
Google scholar
|
[64] |
Ren J, Chen Y, Song H, Chen L, Wang R (2013) Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J Cell Biochem 114:1395–1403
CrossRef
Google scholar
|
[65] |
Riely GJ, Yu HA (2015) EGFR: the paradigm of an oncogene-driven lung cancer. Clin Cancer Res 21:2221–2226
CrossRef
Google scholar
|
[66] |
Santarpia M, Gil N, Rosell R (2015) Strategies to overcome resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Expert Rev Clin Pharmacol 8:461–477
CrossRef
Google scholar
|
[67] |
Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K
CrossRef
Google scholar
|
[68] |
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK
CrossRef
Google scholar
|
[69] |
Shaw AT, Hsu PP, Awad MM, Engelman JA (2013) Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 13:772–787
CrossRef
Google scholar
|
[70] |
Shea M, Costa DB, Rangachari D (2016) Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Ther Adv Respir Dis 10:113–129
CrossRef
Google scholar
|
[71] |
Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, Hashida S, Maki Y, Ichihara E, Asano H
CrossRef
Google scholar
|
[72] |
Shien K, Yamamoto H, Soh J, Miyoshi S, Toyooka S (2014) Drug resistance to EGFR tyrosine kinase inhibitors for non-small cell lung cancer. Acta Med Okayama 68:191–200
|
[73] |
Shoshani O, Zipori D (2015) Stress as a fundamental theme in cell plasticity. Biochim Et Biophys Acta-Gene Regul Mech 1849:371–377
CrossRef
Google scholar
|
[74] |
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H
CrossRef
Google scholar
|
[75] |
Suda K, Tomizawa K, Fujii M, Murakami H, Osada H, Maehara Y, Yatabe Y, Sekido Y, Mitsudomi T (2011) Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol 6:1152–1161
CrossRef
Google scholar
|
[76] |
Sugano T, Seike M, Noro R, Soeno C, Chiba M, Zou F, Nakamichi S, Nishijima N, Matsumoto M, Miyanaga A
CrossRef
Google scholar
|
[77] |
Sui H, Zhu L, Deng W, Li Q (2014) Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 37:584–589
CrossRef
Google scholar
|
[78] |
Sun Y, Daemen A, Hatzivassiliou G, Arnott D, Wilson C, Zhuang G, Gao M, Liu P, Boudreau A, Johnson L
CrossRef
Google scholar
|
[79] |
Sutherland KD, Berns A (2010) Cell of origin of lung cancer. Mol Oncol 4:397–403
CrossRef
Google scholar
|
[80] |
Takezawa K, Pirazzoli V,Arcila ME, Nebhan CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ, Melnick MA
CrossRef
Google scholar
|
[81] |
Tanimoto A, Yamada T, Nanjo S, Takeuchi S, Ebi H, Kita K, Matsumoto K, Yano S (2014) Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells. Oncotarget 5:4920–4928
CrossRef
Google scholar
|
[82] |
Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelialmesenchymal transitions in development and disease. Cell 139:871–890
CrossRef
Google scholar
|
[83] |
Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y
CrossRef
Google scholar
|
[84] |
Toyooka S, Yatabe Y, Tokumo M, Ichimura K, Asano H, Tomii K, Aoe M, Yanai H, Date H, Mitsudomi T
CrossRef
Google scholar
|
[85] |
Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L
CrossRef
Google scholar
|
[86] |
Turtoi A, Blomme A, Castronovo V (2015) Intratumoral heterogeneity and consequences for targeted therapies. Bull Cancer 102:17–23
CrossRef
Google scholar
|
[87] |
Tuveson DA, Jacks T (1999) Modeling human lung cancer in mice: similarities and shortcomings. Oncogene 18:5318–5324
CrossRef
Google scholar
|
[88] |
Uramoto H, Iwata T, Onitsuka T, Shimokawa H, Hanagiri T, Oyama T (2010) Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res 30:2513–2517
|
[89] |
Wang H, Guo R, Zhang L (2015) TKI Resistance for T790M Mutation. Zhongguo Fei Ai Za Zhi 18:245–250
|
[90] |
Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T
CrossRef
Google scholar
|
[91] |
Weinberg R (2013) The biology of cancer. Garland science
|
[92] |
Wilson C, Nicholes K, Bustos D, Lin E, Song Q, Stephan JP, Kirkpatrick DS, Settleman J (2014) Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget 5:7328–7341
CrossRef
Google scholar
|
[93] |
Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM, Corsello SM, Capelletti M, Calles A, Butaney M
CrossRef
Google scholar
|
[94] |
Xin H, Kong Y, Jiang X, Wang K, Qin X, Miao ZH, Zhu Y, Tan W (2013) Multi-drug-resistant cells enriched from chronic myeloid leukemia cells by Doxorubicin possess tumor-initiating-cell properties. J Pharmacol Sci 122:299–304
CrossRef
Google scholar
|
[95] |
Yamaguchi N, Lucena-Araujo AR, Nakayama S, de Figueiredo-Pontes LL, Gonzalez DA, Yasuda H, Kobayashi S, Costa DB (2014) Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer 83:37–43
CrossRef
Google scholar
|
[96] |
Yang J, Qin G, Luo M, Chen J, Zhang Q, Li L, Pan L, Qin S (2015) Reciprocal positive regulation between Cx26 and PI3K/Akt pathway confers acquired gefitinib resistance in NSCLC cells via GJIC-independent induction of EMT. Cell Death Dis 6:e1829
CrossRef
Google scholar
|
[97] |
Yu HA, Tian SK, Drilon AE, Borsu L, Riely GJ, Arcila ME, Ladanyi M (2015) Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain. JAMA Oncol 1:982–984
CrossRef
Google scholar
|
[98] |
Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105:2070–2075
CrossRef
Google scholar
|
[99] |
Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39
CrossRef
Google scholar
|
[100] |
Zhou W, Gurubhagavatula S, Liu G, Park S, Neuberg DS, Wain JC, Lynch TJ, Su L, Christiani DC (2004) Excision repair crosscomplementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 10:4939–4943
CrossRef
Google scholar
|
[101] |
Zhou RJ, Yang XQ, Wang D, Zhou Q, Xia L, Li MX, Zeng LL, Wang G, Yang ZZ (2012) Anti-tumor effects of all-trans retinoic acid are enhanced by genistein. Cell Biochem Biophys 62:177–184
CrossRef
Google scholar
|
/
〈 | 〉 |