TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence
Lucy Cassar, Craig Nicholls, Alex R. Pinto, Ruping Chen, Lihui Wang, He Li, Jun-Ping Liu
TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
BMPRII / TGFbeta / hTERT / telomerase / telomeres / senescence / breast cancer cells
[1] |
Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A (2006) Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chomosomes Cancer 45:411–419
CrossRef
Google scholar
|
[2] |
Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 103:239–246
CrossRef
Google scholar
|
[3] |
Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645
CrossRef
Google scholar
|
[4] |
Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647
CrossRef
Google scholar
|
[5] |
Bestilny LJ, Brown CB, Miura Y, Robertson LD, Riabowol KT (1996) Selective inhibition of telomerase activity during terminal differentiation of immortal cell lines. Cancer Res 56:3796–3802
|
[6] |
Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, Arteaga CL (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117:1305–1313
CrossRef
Google scholar
|
[7] |
Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138
CrossRef
Google scholar
|
[8] |
Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622
CrossRef
Google scholar
|
[9] |
Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, Costello JC, Theodorescu D, Cech TR (2015) Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347:1006–1010
CrossRef
Google scholar
|
[10] |
Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R, Rentsch C, Ten Dijke P, Cleton-Jansen AM, Driouch K
CrossRef
Google scholar
|
[11] |
Buijs JT, Rentsch CA, van der Horst G, van Overveld PG, Wetterwald A, Schwaninger R, Henriquez NV, Ten Dijke P, Borovecki F, Markwalder R
CrossRef
Google scholar
|
[12] |
Cheng D, Zhao Y, Wang S, Jia W, Kang J, Zhu J (2015) Human telomerase reverse transcriptase (hTERT) transcription requires Sp1/Sp3 binding to the promoter and a permissive chomatin environment. J Biol Chem 290:30193–30203
CrossRef
Google scholar
|
[13] |
DamLe RN, Temburni S, Banapour T, Paul S, Mongini PK, Allen SL, Kolitz JE, Rai KR, Chiorazzi N (2012) T-cell independent, B-cell receptor-mediated induction of telomerase activity differs among IGHV mutation-based subgroups of chonic lymphocytic leukemia patients. Blood 120:2438–2449
CrossRef
Google scholar
|
[14] |
de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540
CrossRef
Google scholar
|
[15] |
Denchi EL, de Lange T (2007) Protection of telomeres though independent control of ATM and ATR by TRF2 and POT1. Nature 448:1068–1071
CrossRef
Google scholar
|
[16] |
Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF betainducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100
CrossRef
Google scholar
|
[17] |
Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67:3752–3758
CrossRef
Google scholar
|
[18] |
Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753
CrossRef
Google scholar
|
[19] |
Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6:432–438
CrossRef
Google scholar
|
[20] |
Holt SE, Wright WE, Shay JW (1996) Regulation of telomerase activity in immortal cell lines. Mol Cell Biol 16:2932–2939
CrossRef
Google scholar
|
[21] |
Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K
CrossRef
Google scholar
|
[22] |
Hu B, Tack DC, Liu T, Wu Z, Ullenbruch MR, Phan SH (2006) Role of Smad3 in the regulation of rat telomerase reverse transcriptase by TGFbeta. Oncogene 25:1030–1041
CrossRef
Google scholar
|
[23] |
Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959
CrossRef
Google scholar
|
[24] |
Jacob S, Nayak S, Kakar R, Chaudhari UK, Joshi D, Vundinti BR, Fernandes G, Barai RS, Kholkute SD, Sachdeva G (2016) A triad of telomerase, androgen receptor and early growth response 1 in prostate cancer cells. Cancer Biol Ther 17:439–448
CrossRef
Google scholar
|
[25] |
Jacobs JJ, de Lange T (2005) p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 4:1364–1368
CrossRef
Google scholar
|
[26] |
James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282
CrossRef
Google scholar
|
[27] |
Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426
CrossRef
Google scholar
|
[28] |
Krimpenfort P, Ijpenberg A, Song JY,van der Valk M, Nawijn M, Zevenhoven J, Berns A (2007) p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448:943–946
CrossRef
Google scholar
|
[29] |
Kyo S, Inoue M (2002) Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene 21:688–697
CrossRef
Google scholar
|
[30] |
Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M, Ariga H, Inoue M (2000) Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT) [in process citation]. Nucleic Acids Res 28:669–677
CrossRef
Google scholar
|
[31] |
Li H, Liu JP (2007) Mechanisms of action of TGF-beta in cancer: evidence for Smad3 as a repressor of the hTERT gene. Ann NY Acad Sci 1114:56–68
CrossRef
Google scholar
|
[32] |
Li H, Zhao LL, Funder JW, Liu JP (1997) Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 272:16729–16732
CrossRef
Google scholar
|
[33] |
Li H, Pinto AR, Duan W, Li J, Toh BH, Liu JP (2005) Telomerase down-regulation does not mediate PC12 pheochomocytoma cell differentiation induced by NGF, but requires MAP kinase signalling. J Neurochem 95:891–901
CrossRef
Google scholar
|
[34] |
Li H, Xu D, Li J, Berndt MC, Liu JP (2006) Transforming growth factor beta suppresses human telomerase reverse transcriptase (hTERT) by Smad3 interactions with c-Myc and the hTERT gene. J Biol Chem 281:25588–25600
CrossRef
Google scholar
|
[35] |
Liu X, Yue J, Frey RS, Zhu Q, Mulder KM (1998) Transforming growth factor beta signaling though Smad1 in human breast cancer cells. Cancer Res 58:4752–4757
|
[36] |
Ma T, Gutnick J, Salazar B, Larsen MD, Suenaga E, Zilber S, Huang Z, Huddleston J, Smith RL, Goodman S (2007) Modulation of allograft incorporation by continuous infusion of growth factors over a prolonged duration in vivo. Bone 41:386–392
CrossRef
Google scholar
|
[37] |
Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810
CrossRef
Google scholar
|
[38] |
Miyazaki H, Watabe T, Kitamura T, Miyazono K (2004) BMP signals inhibit proliferation and in vivo tumor growth of androgeninsensitive prostate carcinoma cells. Oncogene 23:9326–9335
CrossRef
Google scholar
|
[39] |
Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452
CrossRef
Google scholar
|
[40] |
Notting I, Buijs J, Mintardjo R, van der Horst G, Vukicevic S, Lowik C, Schalij-Delfos N, Keunen J, van der Pluijm G (2007) Bone morphogenetic protein 7 inhibits tumor growth of human uveal melanoma in vivo. Invest Ophthalmol Vis Sci 48:4882–4889
CrossRef
Google scholar
|
[41] |
Ogawa D, Nomiyama T, Nakamachi T, Heywood EB, Stone JF, Berger JP, Law RE, Bruemmer D (2006) Activation of peroxisome proliferator-activated receptor gamma suppresses telomerase activity in vascular smooth muscle cells. Circ Res 98: e50–e59
CrossRef
Google scholar
|
[42] |
Parsch D, Fellenberg J, Brummendorf TH, Eschlbeck AM, Richter W (2004) Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J Mol Med 82:49–55
CrossRef
Google scholar
|
[43] |
Patel SR, Dressler GR (2005) BMP7 signaling in renal development and disease. Trends Mol Med 11:512–518
CrossRef
Google scholar
|
[44] |
Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P (1999) TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112(Pt 24):4557–4568
|
[45] |
Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC (2006) In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res 66:9583–9590
CrossRef
Google scholar
|
[46] |
Ro TB, Holt RU, Brenne AT, Hjorth-Hansen H, Waage A, Hjertner O, Sundan A, Borset M (2004) Bone morphogenetic protein-5, -6 and-7 inhibit growth and induce apoptosis in human myeloma cells. Oncogene 23:3024–3032
CrossRef
Google scholar
|
[47] |
Rothhammer T, Wild PJ, Meyer S, Bataille F, Pauer A, Klinkhammer-Schalke M, Hein R, Hofstaedter F, Bosserhoff AK (2007) Bone morphogenetic protein 7 (BMP7) expression is a potential novel prognostic marker for recurrence in patients with primary melanoma. Cancer Biomark 3:111–117
|
[48] |
Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 16:743–747
CrossRef
Google scholar
|
[49] |
Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5:577–584
CrossRef
Google scholar
|
[50] |
Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700
CrossRef
Google scholar
|
[51] |
Simic P, Culej JB, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S (2006) Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281:25509–25521
CrossRef
Google scholar
|
[52] |
Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21:4338–4348
CrossRef
Google scholar
|
[53] |
Sugimoto H, Grahovac G, Zeisberg M, Kalluri R (2007) Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephopathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56:1825–1833
CrossRef
Google scholar
|
[54] |
Takakura M, Kyo S, Inoue M, Wright WE, Shay JW (2005) Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 25:8037–8043
CrossRef
Google scholar
|
[55] |
Varga AC, Wrana JL (2005) The disparate role of BMP in stem cell biology. Oncogene 24:5713–5721
CrossRef
Google scholar
|
[56] |
Wang S, Hirschberg R (2004a) Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem 279:23200–23206
CrossRef
Google scholar
|
[57] |
Wang S, Hirschberg R (2004b) Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem 279:23200–23206
CrossRef
Google scholar
|
[58] |
Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R (1999) Direct activation of TERT transcription by c-MYC. Nat Genet 21:220–224
CrossRef
Google scholar
|
[59] |
Xu D, Dwyer J, Li H, Duan W, Liu JP (2008) Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 283:23567–23580
CrossRef
Google scholar
|
[60] |
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660
CrossRef
Google scholar
|
[61] |
Yang Z, Li H, Chai Z, Fullerton MJ, Cao Y, Toh BH, Funder JW, Liu JP (2001) Dynamin II regulates hormone secretion in neuroendocrine cells. J Biol Chem 276, 4251–4260
CrossRef
Google scholar
|
[62] |
Yang S, Zhong C, Frenkel B, Reddi AH, Roy-Burman P (2005) Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells. Cancer Res 65:5769–5777
CrossRef
Google scholar
|
[63] |
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB
CrossRef
Google scholar
|
/
〈 | 〉 |