The critical roles of mitophagy in cerebral ischemia
Yan-Cheng Tang, Hong-Xia Tian, Tao Yi, Hu-Biao Chen
The critical roles of mitophagy in cerebral ischemia
Mitochondria play a key role in various cell processes including ATP production, Ca2+ homeostasis, reactive oxygen species (ROS) generation, and apoptosis. The selective removal of impaired mitochondria by autophagosome is known as mitophagy. Cerebral ischemia is a common form of stroke caused by insufficient blood supply to the brain. Emerging evidence suggests that mitophagy plays important roles in the pathophysiological process of cerebral ischemia. This review focuses on the relationship between ischemic brain injury and mitophagy. Based on the latest research, it describes how the signaling pathways of mitophagy appear to be involved in cerebral ischemia.
autophagy / mitophagy / mitochondria / cerebral ischemia
[1] |
Aerbajinai W, Giattina M, Lee YT, Raffeld M, Miller JL (2003) The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation . Blood 102:712–717
CrossRef
Google scholar
|
[2] |
Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes . J Cell Biol 12:198–202
CrossRef
Google scholar
|
[3] |
Baek SH, Noh AR, Kim KA, Akram M, Shin YJ, Kim ES, Yu SW, Majid A, Bae ON (2014) Modulation ofmitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage . Stroke 45:2438–2443
CrossRef
Google scholar
|
[4] |
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains . Mol Cell Biol 29:2570–2581
CrossRef
Google scholar
|
[5] |
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song QH, Foreman O, Kirkpatrick DS, Sheng MG (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy . Nature 510:370–375
|
[6] |
Birse-Archbold JL, Kerr LE, Jones PA, McCulloch J, Sharkey J (2005) Differential profile of Nix upregulation and translocation during hypoxia/ischaemia in vivo versus in vitro . J Cereb Blood Flow Metab 25:1356–1365
CrossRef
Google scholar
|
[7] |
Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia . Proc Natl Acad Sci USA 97:9082–9087
CrossRef
Google scholar
|
[8] |
Carden DL, Granger DN (2000) Pathophysiology of ischaemia– reperfusion injury . J Pathol 190:255–266
CrossRef
Google scholar
|
[9] |
Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia . Autophagy 6:366–377
CrossRef
Google scholar
|
[10] |
Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Betaamyloid inhibits integrated mitochondrial respiration and key enzyme activities . J Neurochem 80:91–100
|
[11] |
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC (2011) Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy . Hum Mol Genet 20:1726–1737
CrossRef
Google scholar
|
[12] |
Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain . J Cereb Blood Flow Metab 21:2–14
|
[13] |
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, Walden H (2011) Autoregulation of Parkin activity through its ubiquitin-like domain . EMBOJ 30:2853–2867
CrossRef
Google scholar
|
[14] |
Chen G, Cizeau J, VandeVelde C, Park JH, Bozek G, Bolton J, Shi L, Dubik D, Greenberg A(1999) Nix and Nip3 forma subfamilyof pro-apoptotic mitochondrial proteins . J Biol Chem 274:7–10
CrossRef
Google scholar
|
[15] |
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C
CrossRef
Google scholar
|
[16] |
Chen H, Chan DC (2010) Physiological functions of mitochondrial fusion . Ann NY Acad Sci 1201:21–25
CrossRef
Google scholar
|
[17] |
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L
CrossRef
Google scholar
|
[18] |
Chen Y, Dorn GW II (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria . Science 340:471–475
CrossRef
Google scholar
|
[19] |
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin . Nature 441:1162–1166
CrossRef
Google scholar
|
[20] |
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration . Cell 127:59–69
CrossRef
Google scholar
|
[21] |
Deas E, Wood NW, Plun-Favreau H (2011) Mitophagy and Parkinson’s disease: the PINK1-parkin link . Biochim Biophys Acta 1813:623–633
CrossRef
Google scholar
|
[22] |
Deter RL, Baudhuin P, De Duve C(1967) Participationof lysosomes in cellular autophagy inducedin rat liverby glucagon . J Cell Biol 35:C11–C16
|
[23] |
Deter RL, De Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes . J Cell Biol 33:437–449
CrossRef
Google scholar
|
[24] |
Di Y, He YL, Zhao T, Huang X, Wu KW, Liu SH, Zhao YQ, Fan M, Wu LY, Zhu LL (2015) Methyleneblue reduces acute cerebral ischemic injury via the induction of mitophagy . Mol Med 21:420–429
|
[25] |
Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis . Biol Chem 393:547–564
|
[26] |
Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GWII, Yin XM (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming . J Biol Chem 285:27879–27890
CrossRef
Google scholar
|
[27] |
Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT, Daria D, Jegga AG, Geiger H, Aronow BJ
CrossRef
Google scholar
|
[28] |
Dolman NJ, Chambers KM, Mandavilli B, Batchelor RH, Janes MS (2013) Tools and techniques to measure mitophagy using fluorescence microscopy . Autophagy 9:1653–1662
CrossRef
Google scholar
|
[29] |
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R
CrossRef
Google scholar
|
[30] |
Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner . Biochim Biophys Acta 1823:2297–2310
CrossRef
Google scholar
|
[31] |
Galvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA, Dorn GW II (2006) Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress . J Biol Chem 281:1442–1448
CrossRef
Google scholar
|
[32] |
Gao D, Kawai N, Nakamura T, Lu F, Fei Z, Tamiya T (2013) Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats . Neurol Med Chir (Tokyo) 53:365–374
CrossRef
Google scholar
|
[33] |
Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability . Nat Cell Biol 13:589–598
CrossRef
Google scholar
|
[34] |
Gurung P, Lukens JR, Kanneganti TD (2015) Mitochondria: diversity in the regulation of the NLRP3 inflammasome . Trends Mol Med 21:193–201
CrossRef
Google scholar
|
[35] |
Hollville E, Carroll RG, Cullen SP, Martin SJ (2014) Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy . Mol Cell 55:451–466
CrossRef
Google scholar
|
[36] |
Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y
CrossRef
Google scholar
|
[37] |
James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery . J Biol Chem 278:36373–36379
CrossRef
Google scholar
|
[38] |
Jin R, Yang G, Li G (2010a) Inflammatory mechanismsin ischemic stroke: role of inflammatory cells . J Leukoc Biol 87:779–789
|
[39] |
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010b) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL . J Cell Biol 191:933–942
|
[40] |
Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Hoke A, Dawson VL, Dawson TM
CrossRef
Google scholar
|
[41] |
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity . J Cell Biol 205:143–153
CrossRef
Google scholar
|
[42] |
Kanki T (2010) Nix, a receptor protein for mitophagy in mammals . Autophagy 6:433–435
CrossRef
Google scholar
|
[43] |
Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery . Chem Biol 18:1042–1052
CrossRef
Google scholar
|
[44] |
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 . BiochemJ 460:127–139
CrossRef
Google scholar
|
[45] |
Kim JY, Cho JJ, Ha J, Park JH (2002) The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria . Arch Biochem Biophys 398:147–152
CrossRef
Google scholar
|
[46] |
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation . Biochem Biophys Res Commun 377:975–980
CrossRef
Google scholar
|
[47] |
Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria . J Biol Chem 279:39068–39074
CrossRef
Google scholar
|
[48] |
Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E
CrossRef
Google scholar
|
[49] |
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M
CrossRef
Google scholar
|
[50] |
Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, Sundaramoorthy R, Mercier P, Knebel A, Spratt DE
CrossRef
Google scholar
|
[51] |
Kumari S, Anderson L, Farmer S, Mehta SL, Li PA (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion . Transl Stroke Res 3:296–304
CrossRef
Google scholar
|
[52] |
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ(2015)The ubiquitinkinasePINK1 recruits autophagy receptors to induce mitophagy . Nature 524:309–314
CrossRef
Google scholar
|
[53] |
Lee S, Zhang C, Liu X(2015) Roleof glucose metabolism andATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses . J Biol Chem 290:904–917
CrossRef
Google scholar
|
[54] |
Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeteddefense against oxidative stress, mitochondrial dysfunction, and aging . Rejuvenation Res 8:3–5
CrossRef
Google scholar
|
[55] |
Li J, Ma X, Yu W, Lou Z, Mu D, Wang Y, Shen B, Qi S (2012) Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemiain rats . PLoS One 7:e46498
|
[56] |
Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke . Biochem Biophys Res Commun 444:182–188
CrossRef
Google scholar
|
[57] |
Lipton P (1999) Ischemic cell death in brain neurons . Physiol Rev 79:1431–1568
|
[58] |
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W
CrossRef
Google scholar
|
[59] |
Loson OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitmentin mitochondrial fission . Mol Biol Cell 24:659–667
CrossRef
Google scholar
|
[60] |
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N
CrossRef
Google scholar
|
[61] |
Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease . J Neurosci 30:1166–1175
CrossRef
Google scholar
|
[62] |
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J
CrossRef
Google scholar
|
[63] |
Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y
CrossRef
Google scholar
|
[64] |
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F
CrossRef
Google scholar
|
[65] |
McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responsesto experimental stroke and exacerbates brain damage via interleukin-1-and neutrophil-dependent mechanisms . J Neurosci 27:4403–4412
CrossRef
Google scholar
|
[66] |
Mehta SL, Kumari S, Mendelev N, Li PA (2012) Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia . BMC Neurosci 13:79
CrossRef
Google scholar
|
[67] |
Meloni BP, Meade AJ, Kitikomolsuk D, Knuckey NW (2011) Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models . JNeurosci Methods 195:67–74
CrossRef
Google scholar
|
[68] |
Mengesdorf T, Jensen PH, Mies G, Aufenberg C, Paschen W(2002) Down-regulation of parkin protein in transient focal cerebral ischemia: a link between stroke and degenerative disease ? Proc Natl Acad Sci USA 99:15042–15047
|
[69] |
Miclescu A, Sharma HS, Martijn C, Wiklund L(2010) Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions . Crit Care Med 38:2199–2206
CrossRef
Google scholar
|
[70] |
Mills EL, O’Neill LA (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal . Eur J Immunol 46:13–21
CrossRef
Google scholar
|
[71] |
Minton K (2016) Inflammasome: anti-inflammatory effect of mitophagy . Nat Rev Immunol 16:206
CrossRef
Google scholar
|
[72] |
Mizushima N, Komatsu M(2011) Autophagy: renovationof cells and tissues . Cell 147:728–741
CrossRef
Google scholar
|
[73] |
Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H
CrossRef
Google scholar
|
[74] |
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkinis recruited selectively to impaired mitochondria and promotes their autophagy . J Cell Biol 183:795–803
CrossRef
Google scholar
|
[75] |
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010a) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both . Autophagy 6:1090–1106
|
[76] |
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ(2010b) PINK1is selectivelystabilizedon impaired mitochondria to activate Parkin . PLoS Biol 8:e1000298
|
[77] |
Nezich CL, Wang C, Fogel AI, Youle RJ (2015) MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5 . J Cell Biol 210:435–450
CrossRef
Google scholar
|
[78] |
Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy . Trends Cell Biol. doi:10.1016/j.tcb.2016.05.008
CrossRef
Google scholar
|
[79] |
Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M
|
[80] |
Ordureau A, Harper JW (2014) Cell biology: balancing act . Nature 510:347–348
|
[81] |
Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells . J Cell Biol 191:1141–1158
CrossRef
Google scholar
|
[82] |
Palencia G, Medrano JA, Ortiz-Plata A, Farfan DJ, Sotelo J, Sanchez A, Trejo-Solis C (2015) Anti-apoptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats . J Neurol Sci 351:78–87
CrossRef
Google scholar
|
[83] |
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregatesby autophagy . JBiol Chem 282:24131–24145
CrossRef
Google scholar
|
[84] |
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM
CrossRef
Google scholar
|
[85] |
Plotnikov EY, Vasileva AK, Arkhangelskaya AA, Pevzner IB, Skulachev VP, Zorov DB (2008) Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin . FEBS Lett 582:3117–3124
CrossRef
Google scholar
|
[86] |
Prestigiacomo CJ, Kim SC, Connolly ES, Liao H, Yan S-F, Pinsky DJ (1999) CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke . Stroke 30:1110–1117
CrossRef
Google scholar
|
[87] |
Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K
|
[88] |
Ritter LS, Orozco JA, Coull BM, McDonagh PF (2000) Leukocyte accumulation and hemodynamic changes in the cerebral micro-circulation during early reperfusion after stroke . Stroke 31:1153–1161
CrossRef
Google scholar
|
[89] |
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells . Nature 454:232–235
CrossRef
Google scholar
|
[90] |
Sauve V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K(2015)AUbl/ubiquitin switchin the activationof Parkin . EMBOJ 34:2492–2505
CrossRef
Google scholar
|
[91] |
Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology . Trends Biochem Sc i 36:30–38
CrossRef
Google scholar
|
[92] |
Schmidt-Kastner R, Aguirre-Chen C, Kietzmann T, Saul I, Busto R, Ginsberg MD (2004) Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus . Brain Res 1001:133–142
CrossRef
Google scholar
|
[93] |
Schroder K, Tschopp J (2010) The inflammasomes . Cell 140:821–832
CrossRef
Google scholar
|
[94] |
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL
CrossRef
Google scholar
|
[95] |
Shen Q, Du F, Huang S, Rodriguez P, Watts LT, Duong TQ (2013) Neuroprotective efficacy of methylene blue in ischemic stroke: an MRI study . PLoS One 8:e79833
|
[96] |
Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT, Wang C, Cho JH, Hattori N, Youle RJ, van der Bliek AM (2014) Mutations in Fis1 disrupt orderly disposal of defective mitochondria . Mol Biol Cell 25:145–159
CrossRef
Google scholar
|
[97] |
Shi RY, Zhu SH, Li V, Gibson SB, Xu XS, Kong JM (2014) BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke . CNS Neurosci Ther 20:1045–1055
CrossRef
Google scholar
|
[98] |
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy . Sci Rep 2:1002
|
[99] |
Sinha K, Chaudhary G, Gupta YK (2002) Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats . Life Sci 71:655–665
CrossRef
Google scholar
|
[100] |
Strowig T, Henao-Mejia J, Elinav E, Flavell R(2012)Inflammasomes in health and disease . Nature 481:278–286
CrossRef
Google scholar
|
[101] |
Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmstrom KM, Fergusson MM, Yoo YH, Combs CA
CrossRef
Google scholar
|
[102] |
Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication . Biochim Biophys Acta 1410:103–123
CrossRef
Google scholar
|
[103] |
Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo . Autophagy 3:405–407
CrossRef
Google scholar
|
[104] |
Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H(2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival . J Biol Chem 282:5617–5624
CrossRef
Google scholar
|
[105] |
Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, Zhang X, Liu N, Ikeda Y, Matsuura T
CrossRef
Google scholar
|
[106] |
Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC
CrossRef
Google scholar
|
[107] |
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G
CrossRef
Google scholar
|
[108] |
Violot S, Carpentier P, Blanchoin L, Bourgeois D(2009) ReversepHdependence of chromophore protonation explains the large stokes shift of the red fluorescent protein mKeima . J Am Chem Soc 131:10356–10357
CrossRef
Google scholar
|
[109] |
Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L (2014) Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model . Cell Physiol Biochem 34:854–864
CrossRef
Google scholar
|
[110] |
Wauer T, Komander D (2013) Structure of the human Parkin ligase domain in an autoinhibited state . EMBOJ 32:2099–2112
CrossRef
Google scholar
|
[111] |
Wauer T, Simicek M, Schubert A, Komander D(2015) Mechanism of phospho-ubiquitin-induced PARKIN activation . Nature 524:370–374
CrossRef
Google scholar
|
[112] |
Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA
CrossRef
Google scholar
|
[113] |
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L
CrossRef
Google scholar
|
[114] |
Wu W, Li W, Chen H, Jiang L, Zhu R, Feng D(2016) FUNDC1isa novelx mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy . Autophagy1–2
|
[115] |
Yamamori T, Ike S, Bo T, Sasagawa T, Sakai Y, Suzuki M, Yamamoto K, Nagane M, Yasui H, Inanami O (2015) Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after X-irradiation . Mol Biol Cell 26:4607–4617
CrossRef
Google scholar
|
[116] |
Yan WJ, Dong HL, Xiong LZ (2013) The protective roles of autophagy in ischemic preconditioning . Acta Pharmacol Sin 34:636–643
CrossRef
Google scholar
|
[117] |
Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty-acids and energy metabolites in rat-brain . Brain Res 245:307–316
CrossRef
Google scholar
|
[118] |
Youle RJ, Narendra DP (2011) Mechanisms of mitophagy . Nat Rev Mol Cell Biol 12:9–14
CrossRef
Google scholar
|
[119] |
Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, Anderson DC (1995) Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat . Stroke 26:1438–1442; discussion 1443
|
[120] |
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia . J Biol Chem 283:10892–10903
CrossRef
Google scholar
|
[121] |
Zhang J, Loyd MR, Randall MS, Waddell MB, Kriwacki RW, Ney PA (2012) A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes . Autophagy 8:1325–1332
CrossRef
Google scholar
|
[122] |
Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang R-R, Wang X, Hu W-W
CrossRef
Google scholar
|
[123] |
Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T, Yan H, Li W
CrossRef
Google scholar
|
[124] |
Zhao J, Mou Y, Bernstock JD, Klimanis D, Wang S, Spatz M, Maric D, Johnson K, Klinman DM, Li X
|
[125] |
Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR
CrossRef
Google scholar
|
[126] |
Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures . Methods Mol Biol 793:325–339
CrossRef
Google scholar
|
[127] |
Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH (2014) Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage . Neuropharmacology 86:103–115
CrossRef
Google scholar
|
[128] |
Zuo W, Yang PF, Chen J, Zhang Z, Chen NH (2016) Drp-1, a potential therapeutic target for brain ischemic stroke . Br J Pharmacol 173:1665–1677
CrossRef
Google scholar
|
/
〈 | 〉 |