The critical roles of mitophagy in cerebral ischemia

Yan-Cheng Tang, Hong-Xia Tian, Tao Yi, Hu-Biao Chen

PDF(1301 KB)
PDF(1301 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (10) : 699-713. DOI: 10.1007/s13238-016-0307-0
REVIEW
REVIEW

The critical roles of mitophagy in cerebral ischemia

Author information +
History +

Abstract

Mitochondria play a key role in various cell processes including ATP production, Ca2+ homeostasis, reactive oxygen species (ROS) generation, and apoptosis. The selective removal of impaired mitochondria by autophagosome is known as mitophagy. Cerebral ischemia is a common form of stroke caused by insufficient blood supply to the brain. Emerging evidence suggests that mitophagy plays important roles in the pathophysiological process of cerebral ischemia. This review focuses on the relationship between ischemic brain injury and mitophagy. Based on the latest research, it describes how the signaling pathways of mitophagy appear to be involved in cerebral ischemia.

Keywords

autophagy / mitophagy / mitochondria / cerebral ischemia

Cite this article

Download citation ▾
Yan-Cheng Tang, Hong-Xia Tian, Tao Yi, Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia. Protein Cell, 2016, 7(10): 699‒713 https://doi.org/10.1007/s13238-016-0307-0

References

[1]
Aerbajinai W, Giattina M, Lee YT, Raffeld M, Miller JL (2003) The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation . Blood 102:712–717
CrossRef Google scholar
[2]
Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes . J Cell Biol 12:198–202
CrossRef Google scholar
[3]
Baek SH, Noh AR, Kim KA, Akram M, Shin YJ, Kim ES, Yu SW, Majid A, Bae ON (2014) Modulation ofmitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage . Stroke 45:2438–2443
CrossRef Google scholar
[4]
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains . Mol Cell Biol 29:2570–2581
CrossRef Google scholar
[5]
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song QH, Foreman O, Kirkpatrick DS, Sheng MG (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy . Nature 510:370–375
[6]
Birse-Archbold JL, Kerr LE, Jones PA, McCulloch J, Sharkey J (2005) Differential profile of Nix upregulation and translocation during hypoxia/ischaemia in vivo versus in vitro . J Cereb Blood Flow Metab 25:1356–1365
CrossRef Google scholar
[7]
Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia . Proc Natl Acad Sci USA 97:9082–9087
CrossRef Google scholar
[8]
Carden DL, Granger DN (2000) Pathophysiology of ischaemia– reperfusion injury . J Pathol 190:255–266
CrossRef Google scholar
[9]
Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia . Autophagy 6:366–377
CrossRef Google scholar
[10]
Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Betaamyloid inhibits integrated mitochondrial respiration and key enzyme activities . J Neurochem 80:91–100
[11]
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC (2011) Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy . Hum Mol Genet 20:1726–1737
CrossRef Google scholar
[12]
Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain . J Cereb Blood Flow Metab 21:2–14
[13]
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, Walden H (2011) Autoregulation of Parkin activity through its ubiquitin-like domain . EMBOJ 30:2853–2867
CrossRef Google scholar
[14]
Chen G, Cizeau J, VandeVelde C, Park JH, Bozek G, Bolton J, Shi L, Dubik D, Greenberg A(1999) Nix and Nip3 forma subfamilyof pro-apoptotic mitochondrial proteins . J Biol Chem 274:7–10
CrossRef Google scholar
[15]
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy . Mol Cell 54:362–377
CrossRef Google scholar
[16]
Chen H, Chan DC (2010) Physiological functions of mitochondrial fusion . Ann NY Acad Sci 1201:21–25
CrossRef Google scholar
[17]
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy . Autophagy 12:689–702
CrossRef Google scholar
[18]
Chen Y, Dorn GW II (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria . Science 340:471–475
CrossRef Google scholar
[19]
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin . Nature 441:1162–1166
CrossRef Google scholar
[20]
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration . Cell 127:59–69
CrossRef Google scholar
[21]
Deas E, Wood NW, Plun-Favreau H (2011) Mitophagy and Parkinson’s disease: the PINK1-parkin link . Biochim Biophys Acta 1813:623–633
CrossRef Google scholar
[22]
Deter RL, Baudhuin P, De Duve C(1967) Participationof lysosomes in cellular autophagy inducedin rat liverby glucagon . J Cell Biol 35:C11–C16
[23]
Deter RL, De Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes . J Cell Biol 33:437–449
CrossRef Google scholar
[24]
Di Y, He YL, Zhao T, Huang X, Wu KW, Liu SH, Zhao YQ, Fan M, Wu LY, Zhu LL (2015) Methyleneblue reduces acute cerebral ischemic injury via the induction of mitophagy . Mol Med 21:420–429
[25]
Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis . Biol Chem 393:547–564
[26]
Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GWII, Yin XM (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming . J Biol Chem 285:27879–27890
CrossRef Google scholar
[27]
Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT, Daria D, Jegga AG, Geiger H, Aronow BJ (2007) Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis . Proc Natl Acad Sci USA 104:6794–6799
CrossRef Google scholar
[28]
Dolman NJ, Chambers KM, Mandavilli B, Batchelor RH, Janes MS (2013) Tools and techniques to measure mitophagy using fluorescence microscopy . Autophagy 9:1653–1662
CrossRef Google scholar
[29]
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R (2011) Phosphorylation ofULK1 (hATG1)by AMP-activated proteinkinase connects energysensingto mitophagy . Science 331:456–461
CrossRef Google scholar
[30]
Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner . Biochim Biophys Acta 1823:2297–2310
CrossRef Google scholar
[31]
Galvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA, Dorn GW II (2006) Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress . J Biol Chem 281:1442–1448
CrossRef Google scholar
[32]
Gao D, Kawai N, Nakamura T, Lu F, Fei Z, Tamiya T (2013) Anti-inflammatory effect of D-allose in cerebral ischemia/reperfusion injury in rats . Neurol Med Chir (Tokyo) 53:365–374
CrossRef Google scholar
[33]
Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability . Nat Cell Biol 13:589–598
CrossRef Google scholar
[34]
Gurung P, Lukens JR, Kanneganti TD (2015) Mitochondria: diversity in the regulation of the NLRP3 inflammasome . Trends Mol Med 21:193–201
CrossRef Google scholar
[35]
Hollville E, Carroll RG, Cullen SP, Martin SJ (2014) Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy . Mol Cell 55:451–466
CrossRef Google scholar
[36]
Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y (2012) p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia . J Mol Cell Cardiol 52:175–184
CrossRef Google scholar
[37]
James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery . J Biol Chem 278:36373–36379
CrossRef Google scholar
[38]
Jin R, Yang G, Li G (2010a) Inflammatory mechanismsin ischemic stroke: role of inflammatory cells . J Leukoc Biol 87:779–789
[39]
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010b) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL . J Cell Biol 191:933–942
[40]
Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Hoke A, Dawson VL, Dawson TM (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain . EMBOJ 33:2798–2813
CrossRef Google scholar
[41]
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity . J Cell Biol 205:143–153
CrossRef Google scholar
[42]
Kanki T (2010) Nix, a receptor protein for mitophagy in mammals . Autophagy 6:433–435
CrossRef Google scholar
[43]
Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery . Chem Biol 18:1042–1052
CrossRef Google scholar
[44]
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 . BiochemJ 460:127–139
CrossRef Google scholar
[45]
Kim JY, Cho JJ, Ha J, Park JH (2002) The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria . Arch Biochem Biophys 398:147–152
CrossRef Google scholar
[46]
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation . Biochem Biophys Res Commun 377:975–980
CrossRef Google scholar
[47]
Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria . J Biol Chem 279:39068–39074
CrossRef Google scholar
[48]
Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury . AmJ Pathol 172: 454–469
CrossRef Google scholar
[49]
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 . Open Biol 2:120080
CrossRef Google scholar
[50]
Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, Sundaramoorthy R, Mercier P, Knebel A, Spratt DE (2015) Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis . EMBOJ 34:2506–2521
CrossRef Google scholar
[51]
Kumari S, Anderson L, Farmer S, Mehta SL, Li PA (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion . Transl Stroke Res 3:296–304
CrossRef Google scholar
[52]
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ(2015)The ubiquitinkinasePINK1 recruits autophagy receptors to induce mitophagy . Nature 524:309–314
CrossRef Google scholar
[53]
Lee S, Zhang C, Liu X(2015) Roleof glucose metabolism andATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses . J Biol Chem 290:904–917
CrossRef Google scholar
[54]
Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeteddefense against oxidative stress, mitochondrial dysfunction, and aging . Rejuvenation Res 8:3–5
CrossRef Google scholar
[55]
Li J, Ma X, Yu W, Lou Z, Mu D, Wang Y, Shen B, Qi S (2012) Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemiain rats . PLoS One 7:e46498
[56]
Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke . Biochem Biophys Res Commun 444:182–188
CrossRef Google scholar
[57]
Lipton P (1999) Ischemic cell death in brain neurons . Physiol Rev 79:1431–1568
[58]
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W(2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells . Nat Cell Biol 14:177–185
CrossRef Google scholar
[59]
Loson OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitmentin mitochondrial fission . Mol Biol Cell 24:659–667
CrossRef Google scholar
[60]
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N (2007) Functionaland physical interaction between Bcl-X(L) and a BH3like domain in Beclin-1 . EMBOJ 26:2527–2539
CrossRef Google scholar
[61]
Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease . J Neurosci 30:1166–1175
CrossRef Google scholar
[62]
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J (2007) FoxO3 controls autophagy in skeletal muscle in vivo . Cell Metab 6:458–471
CrossRef Google scholar
[63]
Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y (2016) Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation . Cell 166:314–327
CrossRef Google scholar
[64]
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy . J Cell Biol 189:211–221
CrossRef Google scholar
[65]
McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responsesto experimental stroke and exacerbates brain damage via interleukin-1-and neutrophil-dependent mechanisms . J Neurosci 27:4403–4412
CrossRef Google scholar
[66]
Mehta SL, Kumari S, Mendelev N, Li PA (2012) Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia . BMC Neurosci 13:79
CrossRef Google scholar
[67]
Meloni BP, Meade AJ, Kitikomolsuk D, Knuckey NW (2011) Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models . JNeurosci Methods 195:67–74
CrossRef Google scholar
[68]
Mengesdorf T, Jensen PH, Mies G, Aufenberg C, Paschen W(2002) Down-regulation of parkin protein in transient focal cerebral ischemia: a link between stroke and degenerative disease ? Proc Natl Acad Sci USA 99:15042–15047
[69]
Miclescu A, Sharma HS, Martijn C, Wiklund L(2010) Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions . Crit Care Med 38:2199–2206
CrossRef Google scholar
[70]
Mills EL, O’Neill LA (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal . Eur J Immunol 46:13–21
CrossRef Google scholar
[71]
Minton K (2016) Inflammasome: anti-inflammatory effect of mitophagy . Nat Rev Immunol 16:206
CrossRef Google scholar
[72]
Mizushima N, Komatsu M(2011) Autophagy: renovationof cells and tissues . Cell 147:728–741
CrossRef Google scholar
[73]
Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H(2015) Bcl-2like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation . Nat Commun 6:7527
CrossRef Google scholar
[74]
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkinis recruited selectively to impaired mitochondria and promotes their autophagy . J Cell Biol 183:795–803
CrossRef Google scholar
[75]
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010a) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both . Autophagy 6:1090–1106
[76]
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ(2010b) PINK1is selectivelystabilizedon impaired mitochondria to activate Parkin . PLoS Biol 8:e1000298
[77]
Nezich CL, Wang C, Fogel AI, Youle RJ (2015) MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5 . J Cell Biol 210:435–450
CrossRef Google scholar
[78]
Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy . Trends Cell Biol. doi:10.1016/j.tcb.2016.05.008
CrossRef Google scholar
[79]
Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M (2010) p62/ SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria . Genes Cells 15:887–900
[80]
Ordureau A, Harper JW (2014) Cell biology: balancing act . Nature 510:347–348
[81]
Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells . J Cell Biol 191:1141–1158
CrossRef Google scholar
[82]
Palencia G, Medrano JA, Ortiz-Plata A, Farfan DJ, Sotelo J, Sanchez A, Trejo-Solis C (2015) Anti-apoptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats . J Neurol Sci 351:78–87
CrossRef Google scholar
[83]
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregatesby autophagy . JBiol Chem 282:24131–24145
CrossRef Google scholar
[84]
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin . Nature 441:1157–1161
CrossRef Google scholar
[85]
Plotnikov EY, Vasileva AK, Arkhangelskaya AA, Pevzner IB, Skulachev VP, Zorov DB (2008) Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin . FEBS Lett 582:3117–3124
CrossRef Google scholar
[86]
Prestigiacomo CJ, Kim SC, Connolly ES, Liao H, Yan S-F, Pinsky DJ (1999) CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke . Stroke 30:1110–1117
CrossRef Google scholar
[87]
Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K(2013) Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases . Nat Commun 4:1982
[88]
Ritter LS, Orozco JA, Coull BM, McDonagh PF (2000) Leukocyte accumulation and hemodynamic changes in the cerebral micro-circulation during early reperfusion after stroke . Stroke 31:1153–1161
CrossRef Google scholar
[89]
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells . Nature 454:232–235
CrossRef Google scholar
[90]
Sauve V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K(2015)AUbl/ubiquitin switchin the activationof Parkin . EMBOJ 34:2492–2505
CrossRef Google scholar
[91]
Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology . Trends Biochem Sc i 36:30–38
CrossRef Google scholar
[92]
Schmidt-Kastner R, Aguirre-Chen C, Kietzmann T, Saul I, Busto R, Ginsberg MD (2004) Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus . Brain Res 1001:133–142
CrossRef Google scholar
[93]
Schroder K, Tschopp J (2010) The inflammasomes . Cell 140:821–832
CrossRef Google scholar
[94]
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation . Proc Natl Acad Sci USA 104:19500–19505
CrossRef Google scholar
[95]
Shen Q, Du F, Huang S, Rodriguez P, Watts LT, Duong TQ (2013) Neuroprotective efficacy of methylene blue in ischemic stroke: an MRI study . PLoS One 8:e79833
[96]
Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT, Wang C, Cho JH, Hattori N, Youle RJ, van der Bliek AM (2014) Mutations in Fis1 disrupt orderly disposal of defective mitochondria . Mol Biol Cell 25:145–159
CrossRef Google scholar
[97]
Shi RY, Zhu SH, Li V, Gibson SB, Xu XS, Kong JM (2014) BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke . CNS Neurosci Ther 20:1045–1055
CrossRef Google scholar
[98]
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy . Sci Rep 2:1002
[99]
Sinha K, Chaudhary G, Gupta YK (2002) Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats . Life Sci 71:655–665
CrossRef Google scholar
[100]
Strowig T, Henao-Mejia J, Elinav E, Flavell R(2012)Inflammasomes in health and disease . Nature 481:278–286
CrossRef Google scholar
[101]
Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmstrom KM, Fergusson MM, Yoo YH, Combs CA (2015) Measuring in vivo mitophagy . Mol Cell 60:685–696
CrossRef Google scholar
[102]
Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication . Biochim Biophys Acta 1410:103–123
CrossRef Google scholar
[103]
Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo . Autophagy 3:405–407
CrossRef Google scholar
[104]
Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H(2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival . J Biol Chem 282:5617–5624
CrossRef Google scholar
[105]
Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, Zhang X, Liu N, Ikeda Y, Matsuura T(2010)In vivo imaging of autophagy in a mouse stroke model . Autophagy 6:1107–1114
CrossRef Google scholar
[106]
Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress . Science 351:275–281
CrossRef Google scholar
[107]
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy . EMBOJ 27:433–446
CrossRef Google scholar
[108]
Violot S, Carpentier P, Blanchoin L, Bourgeois D(2009) ReversepHdependence of chromophore protonation explains the large stokes shift of the red fluorescent protein mKeima . J Am Chem Soc 131:10356–10357
CrossRef Google scholar
[109]
Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L (2014) Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model . Cell Physiol Biochem 34:854–864
CrossRef Google scholar
[110]
Wauer T, Komander D (2013) Structure of the human Parkin ligase domain in an autoinhibited state . EMBOJ 32:2099–2112
CrossRef Google scholar
[111]
Wauer T, Simicek M, Schubert A, Komander D(2015) Mechanism of phospho-ubiquitin-induced PARKIN activation . Nature 524:370–374
CrossRef Google scholar
[112]
Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA (2011) Alternative mitochondrial electron transfer asa novel strategy for neuroprotection . JBiol Chem 286:16504–16515
CrossRef Google scholar
[113]
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy . EMBO Rep 15:566–575
CrossRef Google scholar
[114]
Wu W, Li W, Chen H, Jiang L, Zhu R, Feng D(2016) FUNDC1isa novelx mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy . Autophagy1–2
[115]
Yamamori T, Ike S, Bo T, Sasagawa T, Sakai Y, Suzuki M, Yamamoto K, Nagane M, Yasui H, Inanami O (2015) Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after X-irradiation . Mol Biol Cell 26:4607–4617
CrossRef Google scholar
[116]
Yan WJ, Dong HL, Xiong LZ (2013) The protective roles of autophagy in ischemic preconditioning . Acta Pharmacol Sin 34:636–643
CrossRef Google scholar
[117]
Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty-acids and energy metabolites in rat-brain . Brain Res 245:307–316
CrossRef Google scholar
[118]
Youle RJ, Narendra DP (2011) Mechanisms of mitophagy . Nat Rev Mol Cell Biol 12:9–14
CrossRef Google scholar
[119]
Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, Anderson DC (1995) Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat . Stroke 26:1438–1442; discussion 1443
[120]
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia . J Biol Chem 283:10892–10903
CrossRef Google scholar
[121]
Zhang J, Loyd MR, Randall MS, Waddell MB, Kriwacki RW, Ney PA (2012) A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes . Autophagy 8:1325–1332
CrossRef Google scholar
[122]
Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang R-R, Wang X, Hu W-W (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance . Autophagy 9:1321–1333
CrossRef Google scholar
[123]
Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T, Yan H, Li W (2014) Endoplasmic reticulum stress inducedby tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy . Autophagy 10:1801–1813
CrossRef Google scholar
[124]
Zhao J, Mou Y, Bernstock JD, Klimanis D, Wang S, Spatz M, Maric D, Johnson K, Klinman DM, Li X (2015) Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats . PLoS One 10:e0140772
[125]
Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR (2016) NFkappaB restricts inflammasome activation via elimination of damaged mitochondria . Cell 164:896–910
CrossRef Google scholar
[126]
Zhu J, Dagda RK, Chu CT (2011) Monitoring mitophagy in neuronal cell cultures . Methods Mol Biol 793:325–339
CrossRef Google scholar
[127]
Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH (2014) Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage . Neuropharmacology 86:103–115
CrossRef Google scholar
[128]
Zuo W, Yang PF, Chen J, Zhang Z, Chen NH (2016) Drp-1, a potential therapeutic target for brain ischemic stroke . Br J Pharmacol 173:1665–1677
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(1301 KB)

Accesses

Citations

Detail

Sections
Recommended

/