Obacunone activates the Nrf2-dependent antioxidant responses
Shengmei Xu, Weimin Chen, Qingfeng Xie, Yang Xu
Obacunone activates the Nrf2-dependent antioxidant responses
[1] |
Chapple SJ, Siow RC, Mann GE (2012) Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 44:1315–1320
CrossRef
Google scholar
|
[2] |
Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673
CrossRef
Google scholar
|
[3] |
Chen, W, Li, S, Li, J, Zhou, W, Wu, S, Xu, S, Cui, K, Zhang, DD, Liu, B (2016) Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury. FASEB J. fj.201500109R
|
[4] |
Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486
CrossRef
Google scholar
|
[5] |
Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V
CrossRef
Google scholar
|
[6] |
Hoshino T, Okamoto M, Sakazaki Y, Kato S, Young HA, Aizawa H (2009) Role of proinflammatory cytokines IL-18 and IL-1beta in bleomycin-induced lung injury in humans and mice. Am J Respir Cell Mol Biol 41:661–670
CrossRef
Google scholar
|
[7] |
Jeong WS, Jun M, Kong AN (2006) Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8:99–106
CrossRef
Google scholar
|
[8] |
Nishinaka T, Ichijo Y, Ito M, Kimura M, Katsuyama M, Iwata K, Miura T, Terada T, Yabe-Nishimura C (2007) Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol Lett 170:238–247
CrossRef
Google scholar
|
[9] |
Poulose SM, Harris ED, Patil BS (2006) Antiproliferative effects of citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells. Nutr Cancer 56:103–112
CrossRef
Google scholar
|
[10] |
Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415
CrossRef
Google scholar
|
[11] |
Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712
CrossRef
Google scholar
|
[12] |
Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT
CrossRef
Google scholar
|
[13] |
Yoon J, Park M, Lee J, Min BS, Ryoo S (2014) Endothelial nitric oxide synthase 11 activation through obacunone-dependent arginase inhibition restored impaired endothelial function in ApoE-null mice. Vascul Pharmacol 60:102–109
CrossRef
Google scholar
|
[14] |
Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151
CrossRef
Google scholar
|
[15] |
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953
CrossRef
Google scholar
|
/
〈 | 〉 |