Fructose promotes growth and antifungal activity of Penicillium citrinum

Chang-wen Wu, Xiaojun Wu, Chao Wen, Bo Peng, Xuan-xian Peng, Xinhua Chen, Hui Li

PDF(676 KB)
PDF(676 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (7) : 527-532. DOI: 10.1007/s13238-016-0280-7
LETTER
LETTER

Fructose promotes growth and antifungal activity of Penicillium citrinum

Author information +
History +

Cite this article

Download citation ▾
Chang-wen Wu, Xiaojun Wu, Chao Wen, Bo Peng, Xuan-xian Peng, Xinhua Chen, Hui Li. Fructose promotes growth and antifungal activity of Penicillium citrinum. Protein Cell, 2016, 7(7): 527‒532 https://doi.org/10.1007/s13238-016-0280-7

References

[1]
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165113
[2]
Geisen R (2000) P. nalgiovense carries a gene which is homologus to the paf gene of P. chrysogenum which codes for an antifungal peptide. Int J Food Microbiol 62:95–101
CrossRef Google scholar
[3]
Irani RJ, Ganapathi K (1959) Carbohydrate constituents of the mycelium of Penicillium chrysogenum grown in media with different sources of carbon. Nature 183:758–760
CrossRef Google scholar
[4]
Marx F, Binder U, Leiter É, Pócsi I (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 65:445–454
CrossRef Google scholar
[5]
Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28
CrossRef Google scholar
[6]
Peng B, Li H, Peng XX (2015a) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell 6:628–637
[7]
Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, Peng XX (2015b) Exogenous alanine or/and glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab 21:249–261
[8]
Pessoni RA, Tersarotto CC, Mateus CA, Zerlin JK, Simões K, de Cássia L, Figueiredo-Ribeiro R, Braga MR (2015) Fructose affecting morphology and inducing β-fructofuranosidases in Penicillium janczewskii. Springerplus 4:487
CrossRef Google scholar
[9]
Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31:541–547
CrossRef Google scholar
[10]
Strijbis K, Distel B (2010) Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9:1809–1815
CrossRef Google scholar
[11]
Sukrutha SK, Adamechova Z, Rachana K, Savitha J, Certik M (2014) Optimization of physiological growth conditions for maximal gamma-linolenic acid production by cunninghamella blakesleeana-JSK2. J Am Oil Chem Soc 91:1507–1513
CrossRef Google scholar
[12]
Wen C, Guo W, Chen X (2014) Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean. J Microbiol Biotechnol 24:1337–1345
CrossRef Google scholar
[13]
Wu ZW, Yang ZJ, Gan D, Fan JL, Dai ZQ, Wang XQ (2014) Influences of carbon sources on the biomass, production and compositions of exopolysaccharides from Paecilomyces hepiali HN1. Biomass Bioenergy 67:260–269
CrossRef Google scholar
[14]
Wu CW, Zhao XL, Wu XJ, Wen C, Li H, Chen XH, Peng XX (2015) Exogenous glycine and serine promote growth and antifungal activity of Penicillium citrinum W1 from the Southwest Indian Ocean. FEMS Microbiol Lett 362:1–9

RIGHTS & PERMISSIONS

2016 HEP and Springer 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(676 KB)

Accesses

Citations

Detail

Sections
Recommended

/