How does a β-barrel integral membrane protein insert into the membrane?

Xuejun C. Zhang, Lei Han

PDF(503 KB)
PDF(503 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (7) : 471-477. DOI: 10.1007/s13238-016-0273-6
VANTAGE POINTS
VANTAGE POINTS

How does a β-barrel integral membrane protein insert into the membrane?

Author information +
History +

Cite this article

Download citation ▾
Xuejun C. Zhang, Lei Han. How does a β-barrel integral membrane protein insert into the membrane?. Protein Cell, 2016, 7(7): 471‒477 https://doi.org/10.1007/s13238-016-0273-6

References

[1]
Behrens S, Maier R, de Cock H, Schmid FX, Gross CA (2001) The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20:285–294
CrossRef Google scholar
[2]
Bell MR, Engleka MJ, Malik A, Strickler JE (2013) To fuse or not to fuse: what is your purpose? Protein Sci 22:1466–1477
[3]
Bennion D, Charlson ES, Coon E, Misra R (2010) Dissection of betabarrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 77:1153–1171
CrossRef Google scholar
[4]
Bergal HT, Hopkins AH, Metzner SI, Sousa MC (2016) The structure of a BamA-BamD fusion illuminates the architecture of the beta-Barrel Assembly Machine Core. Structure 24:243–251
CrossRef Google scholar
[5]
Bitto E, McKay DB (2002) Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10:1489–1498
CrossRef Google scholar
[6]
Bohnert M, Pfanner N, van der Laan M (2015) Mitochondrial machineries for insertion of membrane proteins. Curr Opin Struct Biol 33:92–102
CrossRef Google scholar
[7]
Bos MP, Robert V, Tommassen J (2007) Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep 8:1149–1154
CrossRef Google scholar
[8]
Bosch D, Voorhout W, Tommassen J (1988) Export and localization of N-terminally truncated derivatives of Escherichia coli K-12 outer membrane protein PhoE. J Biol Chem 263:9952–9957
[9]
Burgess NK, Dao TP, Stanley AM, Fleming KG (2008) Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J Biol Chem 283:26748–26758
CrossRef Google scholar
[10]
Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y (2014) Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci USA 111:E5439–E5444
[11]
Chai Q, Ferrell B, Zhong M, Zhang X, Ye C, Wei Y (2014) Diverse sequences are functional at the C-terminus of the E. coli periplasmic chaperone SurA. Protein Eng Des Sel 27:111–116
CrossRef Google scholar
[12]
Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, Locht C, Jacob-Dubuisson F, Villeret V (2007) Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317:957–961
CrossRef Google scholar
[13]
Cymer F, von Heijne G, White SH (2014) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427:999–1022
[14]
de Leij L, Kingma J, Witholt B (1979) Nature of the regions involved in the insertion of newly synthesized protein into the outer membrane of Escherichia coli. Biochim Biophys Acta 553:224–234
CrossRef Google scholar
[15]
Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21:523–531
CrossRef Google scholar
[16]
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220
CrossRef Google scholar
[17]
Fleming KG (2015) A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos Trans R Soc Lond B Biol Sci 370:20150026
CrossRef Google scholar
[18]
Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, Fleming KG (2014) Outer membrane beta-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci USA 111:5878–5883
CrossRef Google scholar
[19]
Goemans C, Denoncin K, Collet JF (2014) Folding mechanisms of periplasmic proteins. Biochim Biophys Acta 1843:1517–1528
CrossRef Google scholar
[20]
Gogala M, Becker T, Beatrix B, Armache JP, Barrio-Garcia C, Berninghausen O, Beckmann R (2014) Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506:107–110
CrossRef Google scholar
[21]
Gruss F, Zahringer F, Jakob RP, Burmann BM, Hiller S, Maier T (2013) The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 20:1318–1320
CrossRef Google scholar
[22]
Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W (2016) Structural basis of outer membrane protein insertion by the BAM complex. Nature 531:64–69
CrossRef Google scholar
[23]
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J (2016) Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23:192–196
CrossRef Google scholar
[24]
Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–964
CrossRef Google scholar
[25]
Knowles TJ, Jeeves M, Bobat S, Dancea F, McClelland D, Palmer T, Overduin M, Henderson IR (2008) Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol Microbiol 68:1216–1227
CrossRef Google scholar
[26]
Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919
CrossRef Google scholar
[27]
Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:516–520
CrossRef Google scholar
[28]
Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ (2006) YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61:151–164
CrossRef Google scholar
[29]
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501:385–390
CrossRef Google scholar
[30]
Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK (2014) Lateral opening and exit pore formation are required for BamA function. Structure 22:1055–1062
CrossRef Google scholar
[31]
Noinaj N, Rollauer SE, Buchanan SK (2015) The beta-barrel membrane protein insertase machinery from Gram-negative bacteria. Curr Opin Struct Biol 31:35–42
CrossRef Google scholar
[32]
Pautsch A, Schulz GE (1998) Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol 5:1013–1017
CrossRef Google scholar
[33]
Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y (2014) Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511:108–111
CrossRef Google scholar
[34]
Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:e377
[35]
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK (2015) Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 370:20150023
CrossRef Google scholar
[36]
Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ (2007a) Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci USA 104:6400–6405
[37]
Sklar JG, Wu T, Kahne D, Silhavy TJ (2007b) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–2484
[38]
Struyve M, Moons M, Tommassen J (1991) Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148
CrossRef Google scholar
[39]
Thoma J, Burmann BM, Hiller S, Muller DJ (2015) Impact of holdase chaperones Skp and SurA on the folding of beta-barrel outermembrane proteins. Nat Struct Mol Biol 22:795–802
CrossRef Google scholar
[40]
Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105:17742–17747
CrossRef Google scholar
[41]
von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494
CrossRef Google scholar
[42]
Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932
CrossRef Google scholar
[43]
Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245
CrossRef Google scholar
[44]
Xu X, Wang S, Hu YX, McKay DB (2007) The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J Mol Biol 373:367–381
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(503 KB)

Accesses

Citations

Detail

Sections
Recommended

/