Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration
Juan Feng, Silin Lü, Yanhong Ding, Ming Zheng, Xian Wang
Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration
Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretioninTcells.However,whetherhomocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivoand in vitrostudies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition ofERstress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.
homocysteine / T cell / mitochondria / endoplasmic reticulum stress
[1] |
Arruda AP, Pers BM, Parlakgü l G, Gü ney E, Inouye K, Hotamisligil GS (2014) Chronic enrichment of hepatic endoplasmic reticulummitochondria contact leads to mitochondrial dysfunction in obesity . Nat Med 20:1427–1435
CrossRef
Google scholar
|
[2] |
Balaban RS (2009) The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work . Biochim Biophys Acta 1787:1334–1341
CrossRef
Google scholar
|
[3] |
Bettigole SE, Glimcher LH (2015) Endoplasmic reticulum stress in immunity . Annu Rev Immunol 33:107–138
CrossRef
Google scholar
|
[4] |
Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, Rodriguez AE, Verdejo HE, Ferreira J, Iglewski M, Chiong M, Simmen T, Zorzano A, Hill JA, Rothermel BA, Szabadkai G, Lavandero S (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress . J Cell Sci 124:2143–2152
CrossRef
Google scholar
|
[5] |
Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells . Biochem J 284:1–13
CrossRef
Google scholar
|
[6] |
Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of proteinprotein colocalization in live cells . Biophys J 86:3993–4003
CrossRef
Google scholar
|
[7] |
Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, Zhang S, Bettigole SE, Gupta D, Holcomb K, Ellenson LH, Caputo T, Lee AH, Conejo-Garcia JR, Glimcher LH (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis . Cell 161:1527–1538
CrossRef
Google scholar
|
[8] |
Dai J, Li W, Chang L, Zhang Z, Tang C, Wang N, Zhu Y, Wang X (2006) Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis . Free Radic Biol Med 41:1566–1577
CrossRef
Google scholar
|
[9] |
Feng J, Zhang Z, Kong W, Liu B, Xu Q, Wang X (2009) Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice . Cardiovasc Res 84:155–163
CrossRef
Google scholar
|
[10] |
Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, Haeberli L, Huck C, Turka LA, Wood KC, Hale LP, Smith PA, Schneider MA, MacIver NJ, Locasale JW, Newgard CB, Shinohara ML, Rathmell JC (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation . J Clin Invest 125:194–207
CrossRef
Google scholar
|
[11] |
Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, Poddar R, Jacobsen DW, Zhang K, Kaufman RJ, Austin RC (2003) TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia . J Biol Chem 278:30317–30327
CrossRef
Google scholar
|
[12] |
Katika MR, Hendriksen PJ, van Loveren H, Peijnenburg A (2011) Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis . Toxicol Appl Pharmacol 254:311–322
CrossRef
Google scholar
|
[13] |
Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng J, Xiang X, Kong W, Xu G, Li Y, Wang X (2013) Hyperhomocysteinemia Promotes Insulin Resistance by Inducing Endoplasmic Reticulum Stress in Adipose Tissue . J Biol Chem 288:9583–9592
CrossRef
Google scholar
|
[14] |
Ma K, Lv S, Liu B, Liu Z, Luo Y, Kong W, Xu Q, Feng J, Wang X (2013) CTLA4-IgG ameliorates homocysteine-accelerated atherosclerosis by inhibiting T-cell overactivation in apoE(-/-) mice . Cardiovasc Res 97:349–359
CrossRef
Google scholar
|
[15] |
MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes . Annu Rev Immunol 31:259–283
CrossRef
Google scholar
|
[16] |
Martinon F, Glimcher LH (2011) Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum . Curr Opin Immunol 23:35–40
CrossRef
Google scholar
|
[17] |
Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages . Nat Immunol 11:411–418
CrossRef
Google scholar
|
[18] |
O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, Qiu J, Smith AM, Lam WY, DiPlato LM, Hsu FF, Birnbaum MJ, Pearce EJ, Pearce EL (2014) Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development . Immunity 41:75–88
CrossRef
Google scholar
|
[19] |
Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling . Immunity 38:225–236
CrossRef
Google scholar
|
[20] |
Staton TL, Lazarevic V, Jones DC, Lanser AJ, Takagi T, Ishii S, Glimcher LH (2011) Dampening of death pathways by schnurri-2 is essential for T-cell development . Nature 472:105–109
CrossRef
Google scholar
|
[21] |
Szabadkai G,Duchen MR (2008) Mitochondria: the hub of cellular Ca2+ signaling . Physiology (Bethesda) 23:84–94
CrossRef
Google scholar
|
[22] |
van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development . Immunity 36:68–78
CrossRef
Google scholar
|
[23] |
Wei HJ, Xu JH, Li MH, Tang JP, Zou W, Zhang P, Wang L, Wang CY, Tang XQ (2014) Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway . Acta Pharmacol Sin 35:707–715
CrossRef
Google scholar
|
[24] |
Yang X, Xu H, Hao Y, Zhao L, Cai X, Tian J, Zhang M, Han X, Ma S, Cao J, Jiang Y (2014) Endoplasmic reticulum oxidoreductin 1α mediates hepatic endoplasmic reticulum stress in homocysteineinduced atherosclerosis . Acta Biochim Biophys Sin (Shanghai) 46:902–910
CrossRef
Google scholar
|
[25] |
Zeng X, Dai J, Remick DG, Wang X (2003) Homocysteine mediated expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human monocytes . Circ Res 93:311–320
CrossRef
Google scholar
|
[26] |
Zhang Q, Zeng X, Guo J, Wang X (2002) Oxidant stress mechanism of homocysteine potentiating Con A-induced proliferation in murine splenic T lymphocytes . Cardiovasc Res 53:1035–1042
CrossRef
Google scholar
|
/
〈 | 〉 |