Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

Zhuoya Gu, Ke Jin, M. James C. Crabbe, Yang Zhang, Xiaolin Liu, Yanyan Huang, Mengyi Hua, Peng Nan, Zhaolei Zhang, Yang Zhong

PDF(1199 KB)
PDF(1199 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (4) : 250-266. DOI: 10.1007/s13238-015-0240-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

Author information +
History +

Abstract

Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P<2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC:r=0.997, P=2.3×10-4; IMR90:r=0.934, P=2×10-2; Promoter:hESC: r = 0.995, P = 3.8 × 10-4; IMR90:r = 0.996, P = 3.2 × 10-4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.

Keywords

chromatin interaction / alternative parameter of Hi-C data / open chromatin / methylation potential

Cite this article

Download citation ▾
Zhuoya Gu, Ke Jin, M. James C. Crabbe, Yang Zhang, Xiaolin Liu, Yanyan Huang, Mengyi Hua, Peng Nan, Zhaolei Zhang, Yang Zhong. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome. Protein Cell, 2016, 7(4): 250‒266 https://doi.org/10.1007/s13238-015-0240-7

References

[1]
Ahn K, Gim JA, Ha HS, Han K, Kim HS (2013) The novel MER transposon-derived miRNAs in human genome. Gene 512 (2):422–428
[2]
Antonaki A, Demetriades C, Polyzos A, Banos A, Vatsellas G, Lavigne MD, Apostolou E, Mantouvalou E, Papadopoulou D, Mosialos G (2011) Genomic analysis reveals a novel nuclear factor-kappaB (NF-kappaB)-binding site in Alu-repetitive elements. J Biol Chem 286(44):38768–38782
CrossRef Google scholar
[3]
Banerji J, Olson L, Schaffner W (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33(3):729–740
[4]
Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379
[5]
Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12(12):846–860
CrossRef Google scholar
[6]
Bestor TH (1998) The host defence function of genomic methylation patterns. Novartis Foundation Symposium 214:187–195; discussion195–189, 228–132
[7]
Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18(11): 1752–1762
[8]
Brookfield JF (2001) Selection on Alu sequences? Curr Biol 11(22): R900–901
[9]
Brookfield JF (2005) The ecology of the genome—mobile DNA elements and their hosts. Nat Rev Genet 6(2): 128–136
CrossRef Google scholar
[10]
Chen JM, Stenson PD, Cooper DN, Ferec C(2005) Asystematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Human Genet 117(5): 411–427
[11]
Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10): 691–703
CrossRef Google scholar
[12]
Cui F, Sirotin MV, Zhurkin VB (2011) Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 6:2
CrossRef Google scholar
[13]
de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26(1): 11–24
CrossRef Google scholar
[14]
Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10): 1010–1022
[15]
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558): 1306–1311
[16]
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398): 376–380
[17]
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10): 1299–1309
[18]
Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi AI, Wutz A (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38(3): 452–464
[19]
Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24(4): 363–367
[20]
Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5): 563–571
[21]
Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9(5): 397–405
[22]
Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH (2009) An oestrogen-receptor-alphabound human chromatin interactome. Nature 462(7269): 58–64
[23]
Gallus GN, Cardaioli E, Rufa A, Da Pozzo P, Bianchi S, D’Eramo C, Collura M, Tumino M, Pavone L, Federico A (2010) Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy. Mol Vis 16: 178–183
[24]
Gifford WD, Pfaff SL, Macfarlan TS (2013) Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 23(5): 218–226
[25]
Gillies SD, Morrison SL, Oi VT, Tonegawa S (1983) A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33(3): 717–728
[26]
Grover D, Majumder PP, Rao CB, Brahmachari SK, Mukerji M (2003) Nonrandom distribution of Alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22. Mol Biol Evol 20(9): 1420–1424
[27]
Grover D, Mukerji M, Bhatnagar P, Kannan K, Brahmachari SK (2004) Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20(6): 813–817
[28]
Hackenberg M, Bernaola-Galvan P, Carpena P, Oliver JL (2005) The biased distribution of Alus in human isochores might be driven by recombination. J Mol Evol 60(3): 365–377
CrossRef Google scholar
[29]
Hambor JE, Mennone J, Coon ME, Hanke JH, Kavathas P (1993) Identification and characterization of an Alu-containing, T-cellspecific enhancer located in the last intron of the human CD8 alpha gene. Mol Cell Biol 13(11): 7056–7070
[30]
Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5): 479–491
[31]
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243): 108–112
CrossRef Google scholar
[32]
Huda A, Bowen NJ, Conley AB, Jordan IK (2011) Epigenetic regulation of transposable element derived human gene promoters. Gene 475(1): 39–48
[33]
Jin P, Qin S, Chen X, Song Y, Li-Ling J, Xu X, Ma F (2012) Evolutionary rate of human tissue-specific genes are related with transposable element insertions. Genetica 140(10–12): 513–523
[34]
Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2): 68–72
[35]
Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Nat Acad Sci USA 94(5): 1872–1877
[36]
Jurka J, Kohany O, Pavlicek A, Kapitonov VV, Jurka MV (2004) Duplication, coclustering, and selection of human Alu retrotransposons. Proc Nat Acad Sci USA 101(5): 1268–1272
[37]
Kaer K, Branovets J, Hallikma A, Nigumann P, Speek M (2011) Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 6(10): e26099
[38]
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314): 430–435
[39]
Kapitonov V, Jurka J (1996) The age of Alu subfamilies. J Mol Evol 42(1): 59–65
CrossRef Google scholar
[40]
Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664): 1626–1632
[41]
Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55(1): 1–24
[42]
Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53(3): 391–400
[43]
Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42(7): 631–634
[44]
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W (2001a) Initial sequencing and analysis of the human genome. Nature 409(6822): 860–921
[45]
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W (2001b) Initial sequencing and analysis of the human genome. Nature 409(6822): 860–921
[46]
Li G, Fullwood MJ, Xu H, Mulawadi FH, Velkov S, Vega V, Ariyaratne PN, Mohamed YB, Ooi HS, Tennakoon C (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 11(2): R22
[47]
Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J (2012) Extensive promotercentered chromatin interactions provide a topological basis for transcription regulation. Cell 148(1–2): 84–98
[48]
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950): 289–293
[49]
Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, Xing Y (2008) Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet 4(10): e1000225
[50]
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271): 315–322
[51]
Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Nat Acad Sci USA 104(19): 8005–8010
[52]
Lu Y, Zhou Y, Tian W (2013) Combining Hi-C data with phylogenetic correlation to predict the target genes of distal regulatory elements in human genome. Nucleic Acids Res 41(22): 10391–10402
[53]
Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposonmediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11): 1154–1159
[54]
Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genom Human Genet 7: 29–59
CrossRef Google scholar
[55]
Medstrand P, Landry JR, Mager DL (2001) Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 276(3): 1896–1903
CrossRef Google scholar
[56]
Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17(11): 619–621
CrossRef Google scholar
[57]
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398): 381–385
[58]
Oei SL, Babich VS, Kazakov VI, Usmanova NM, Kropotov AV, Tomilin NV (2004) Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters. Genomics 83(5): 873–882
[59]
Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12(4): 283–293
[60]
Pastor T, Pagani F (2011) Interaction of hnRNPA1/A2 and DAZAP1 with an Alu-derived intronic splicing enhancer regulates ATM aberrant splicing. PLoS One 6(8): e23349
[61]
Polak P, Domany E (2006) Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genom 7: 133
CrossRef Google scholar
[62]
Quentin Y (1992a) Origin of the Alu family: a family of Alu-like monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res 20(13): 3397–3401
[63]
Quentin Y (1992b) Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res 20(3): 487–493
[64]
Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905): 407–411
CrossRef Google scholar
[65]
Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C, Schreiber SL, Mellor J, Kouzarides T (2003) Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12(5): 1325–1332
CrossRef Google scholar
[66]
Schmidt D, Schwalie PC, Wilson MD, Ballester B, Goncalves A, Kutter C, Brown GD, Marshall A, Flicek P, Odom DT (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1–2): 335–348
[67]
Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6(1): 73–77
CrossRef Google scholar
[68]
Shen S, Lin L, Cai JJ, Jiang P, Kenkel EJ, Stroik MR, Sato S, Davidson BL, Xing Y (2011) Widespread establishment and regulatory impact of Alu exons in human genes. Proc Nat Acad Sci USA 108(7): 2837–2842
[69]
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11): 1348–1354
[70]
Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22(10): 532–536
[71]
Smallwood A, Ren B (2013) Genome organization and long-range regulation of gene expression by enhancers. Curr Opin Cell Biol 25(3): 387–394
CrossRef Google scholar
[72]
Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9(6): 657–663
[73]
Smit A, Hubley R, Green P (1996–2010) RepeatMasker Open-3.0. http://www.repeatmaskerorg
[74]
Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced. Genome Res 12(7): 1060–1067
[75]
Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6): 465–476
[76]
Teng L, Firpi HA, Tan K (2011) Enhancers in embryonic stem cells are enriched for transposable elements and genetic variations associated with cancers. Nucleic Acids Res 39(17): 7371–7379
[77]
Ule J (2013) Alu elements: at the crossroads between disease and evolution. Biochem Soc Trans 41(6): 1532–1535
[78]
Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic acids research 35(Database issue): D88–92
[79]
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341): 120–124
[80]
Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39(4): 457–466
[81]
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12): 973–982
[82]
Winkler S, van Leeuwen K, Deboer M, Rosen-Wolff A, Roos D, Roesler J (2013) Alu repeat-induced deletions in chronic granulomatous disease: a cause not only for p67-phox, but also for p47-phox deficiency. Ann Hematol 92(7): 1003–1004
[83]
Xie H, Wang M, Bonaldo MDF, Rajaram V, Stellpflug W, Smith C, Arndt K, Goldman S, Tomita T, Soares MB (2010a) Epigenomic analysis of Alu repeats in human ependymomas. Proc Nat Acad Sci USA 107(15): 6952–6957
[84]
Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA, Cowan C, Zhong S (2010b) Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 20(6): 804–815
[85]
Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43(11): 1059–1065
[86]
Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8): 335–340
[87]
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9): R137

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(1199 KB)

Accesses

Citations

Detail

Sections
Recommended

/