Mitochondrial DNA in the regulation of innate immune responses
Chunju Fang, Xiawei Wei, Yuquan Wei
Mitochondrial DNA in the regulation of innate immune responses
Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.
mitochondrial DNA / innate immunity / TLR9 / NLRP3 / STING pathway
[1] |
Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, Pare A, Rousseau M, Naika GS, Levesque T
CrossRef
Google scholar
|
[2] |
Celardo I, Martins LM, Gandhi S (2014) Unravelling mitochondrial pathways to Parkinson’s disease. BrJPharmacol 171:1943–1957
|
[3] |
Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000
CrossRef
Google scholar
|
[4] |
Cossarizza A, Pinti M, Nasi M, Gibellini L, Manzini S, Roat E, De Biasi S, Bertoncelli L,Montagna JP, Bisi L
CrossRef
Google scholar
|
[5] |
Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL (2013) Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep 3:1077
|
[6] |
Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257
CrossRef
Google scholar
|
[7] |
Escames G, Lopez LC, Garcia JA, Garcia-Corzo L, Ortiz F, Acuna-Castroviejo D (2012) Mitochondrial DNA and inflammatory diseases. Hum Genet 131:161–173
CrossRef
Google scholar
|
[8] |
Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247
CrossRef
Google scholar
|
[9] |
Gurung P, Lukens JR, Kanneganti TD (2015) Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med 21:193–201
CrossRef
Google scholar
|
[10] |
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K
CrossRef
Google scholar
|
[11] |
Horng T (2014) Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol 35:253–261
CrossRef
Google scholar
|
[12] |
Julian MW, Shao G, Vangundy ZC, Papenfuss TL, Crouser ED (2013) Mitochondrialtranscription factor A, an endogenous danger signal, promotes TNFalpha release via RAGE-and TLR9-responsive plasmacytoid dendritic cells. PloS one 8:e72354
|
[13] |
Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P
CrossRef
Google scholar
|
[14] |
Kanneganti TD, Kundu M, Green DR (2015) Innate immune recognition of mtDNA-An undercover signal? Cell Metab 21:793–794
|
[15] |
Kenneth M(2011) Janeway’s immunobiology. Garland Science, New York
|
[16] |
Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Ann Rev Cell Dev Biol 28:137–161
CrossRef
Google scholar
|
[17] |
Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Ann Rev Biochem 79:683–706
CrossRef
Google scholar
|
[18] |
Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198
CrossRef
Google scholar
|
[19] |
Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, Joshi S, Wang H, Andersson U, Chavan SS
|
[20] |
Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins andATP. Nature 440:228–232
CrossRef
Google scholar
|
[21] |
Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaco JG
CrossRef
Google scholar
|
[22] |
Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241
CrossRef
Google scholar
|
[23] |
Morshed M, Hlushchuk R, Simon D, Walls AF, Obata-Ninomiya K, Karasuyama H, Djonov V, Eggel A, Kaufmann T, Simon HU
CrossRef
Google scholar
|
[24] |
Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP
CrossRef
Google scholar
|
[25] |
Nakayama H, Otsu K (2013)Translationof hemodynamic stressto sterile inflammation in the heart. Trends Endocrinol Metab 24:546–553
CrossRef
Google scholar
|
[26] |
Nishikawa T, Araki E(2007) Impactof mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–353
CrossRef
Google scholar
|
[27] |
Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K
CrossRef
Google scholar
|
[28] |
Rongvaux A, Jackson R, Harman CC,Li T, West AP, de Zoete MR, Wu Y, Yordy B, Lakhani SA, Kuan CY
CrossRef
Google scholar
|
[29] |
Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM
CrossRef
Google scholar
|
[30] |
Strowig T, Henao-Mejia J, Elinav E, Flavell R(2012)Inflammasomes in health and disease. Nature 481:278–286
CrossRef
Google scholar
|
[31] |
von Kockritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87:775–783
CrossRef
Google scholar
|
[32] |
Wei X, Shao B, He Z,Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S
CrossRef
Google scholar
|
[33] |
Wen H, Miao EA,Ting JP (2013) Mechanismsof NOD-like receptor-associated inflammasome activation. Immunity 39:432–441
CrossRef
Google scholar
|
[34] |
West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402
CrossRef
Google scholar
|
[35] |
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA
CrossRef
Google scholar
|
[36] |
White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft MF, Bedoui S, Lessene G, Ritchie ME
CrossRef
Google scholar
|
[37] |
Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T (2015) Viral RNA detection by RIG-I-like receptors. Current Opin Immunol 32:48–53
CrossRef
Google scholar
|
[38] |
Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ
CrossRef
Google scholar
|
[39] |
Yousefi S, Morshed M, Amini P, Stojkov D, Simon D, von Gunten S, Kaufmann T, Simon HU (2015) Basophils exhibit antibacterial activity through extracellular trap formation. Allergy 70:1184–1188
CrossRef
Google scholar
|
[40] |
Yu EP, Bennett MR (2014) Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab 25:481–487
CrossRef
Google scholar
|
[41] |
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107
CrossRef
Google scholar
|
[42] |
Zhang Z, Xu X, Ma J, Wu J, Wang Y, Zhou R, Han J (2013) Gene deletion of Gabarap enhances Nlrp3 inflammasome-dependent inflammatory responses. J Immunol 190:3517–3524
CrossRef
Google scholar
|
[43] |
Zhang JZ, Liu Z, Liu J, Ren JX, Sun TS (2014) Mitochondrial DNA induces inflammation and increases TLR9/NF-kappaB expression in lung tissue. Int J Mol Med 33:817–824
|
/
〈 | 〉 |