Biogenesis and regulation of the let-7 miRNAs and their functional implications
Hosuk Lee, Sungwook Han, Chang Seob Kwon, Daeyoup Lee
Biogenesis and regulation of the let-7 miRNAs and their functional implications
The let-7 miRNAwasone of thefirstmiRNAsdiscovered in the nematode, Caenorhabditis elegans, and its biological functions show a high level of evolutionary conservation from the nematode to the human. Unlike in C. elegans, higher animals have multiple isoforms of let-7 miRNAs; these isoforms share a consensus sequence called the ‘seed sequence’ and these isoforms are categorized into let-7 miRNA family. The expression of let-7 family is required for developmental timing and tumor suppressor function, but must be suppressed for the self-renewal of stem cells. Therefore, let-7 miRNA biogenesis must be carefully controlled. To generate a let-7 miRNA, a primary transcript is produced by RNA polymerase II and then subsequently processed by Drosha/DGCR8, TUTase, and Dicer. Because dysregulation of let-7 processing is deleterious, biogenesis of let-7 is tightly regulated by cellular factors, such as the RNA binding proteins, LIN28A/B and DIS3L2. In this review, we discuss the biological functions and biogenesis of let-7 miRNAs, focusing on the molecular mechanisms of regulation of let-7 biogenesis in vertebrates, such as the mouse and the human.
miRNA processing / miRNA biogenesis / let-7 family / TUTase / LIN28A/B
[1] |
Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans . Dev Cell 9:403–414
CrossRef
Google scholar
|
[2] |
Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function . Nat Rev Mol Cell Biol 14:475–488
CrossRef
Google scholar
|
[3] |
Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H, Siomi MC (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing . Proc Natl Acad Sci USA 105:7964–7969
CrossRef
Google scholar
|
[4] |
Bashirullah A, Pasquinelli AE, Kiger AA, Perrimon N, Ruvkun G, Thummel CS(2003) Coordinate regulationofsmall temporal RNAs at the onset of Drosophila metamorphosis . Dev Biol 259:1–8
CrossRef
Google scholar
|
[5] |
Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes . Mol Cell 28:328–336
CrossRef
Google scholar
|
[6] |
Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference . Nature 409:363–366
CrossRef
Google scholar
|
[7] |
Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A(2009) Nuclear hormone receptor regulation of microRNAs controls developmental progression . Science 324:95–98
CrossRef
Google scholar
|
[8] |
Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs . RNA 10:185–191
CrossRef
Google scholar
|
[9] |
Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, Feig C, Xu J, Burge CB, Peter ME (2008) Identification of let-7-regulated oncofetal genes . Cancer Res 68:2587–2591
CrossRef
Google scholar
|
[10] |
Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME (2010) The role of let-7 in cell differentiation and cancer . Endocr Relat Cancer 17:F19–F36
CrossRef
Google scholar
|
[11] |
Bracht J, Hunter S, Eachus R, Weeks P, Pasquinelli AE (2004) Trans-splicing and polyadenylation of let-7 microRNA primary transcripts . RNA 10:1586–1594
CrossRef
Google scholar
|
[12] |
Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition . PLoS Biol 3:e85
CrossRef
Google scholar
|
[13] |
Caygill EE, Johnston LA (2008)Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs . Curr Biol 18:943–950
CrossRef
Google scholar
|
[14] |
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis . Nat Genet 40:43–50
CrossRef
Google scholar
|
[15] |
Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway . Nature 497:244–248
CrossRef
Google scholar
|
[16] |
Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010)Adicerindependent miRNA biogenesis pathway that requires Ago catalysis . Nature 465:584–589
CrossRef
Google scholar
|
[17] |
Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D
CrossRef
Google scholar
|
[18] |
Chiu SC, Chung HY, Cho DY, Chan TM, Liu MC, Huang HM, Li TY, Lin JY, Chou PC, Fu RH
CrossRef
Google scholar
|
[19] |
Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND
CrossRef
Google scholar
|
[20] |
Copley MR, Babovic S, Benz C, Knapp DJ, Beer PA, Kent DG, Wohrer S, Treloar DQ, Day C, Rowe K
CrossRef
Google scholar
|
[21] |
Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih Ie M, Zhang Y, Wood W 3rd, Becker KG, Morin PJ (2008) MicroRNA expression and identification of putative miRNA targets in ovarian cancer . PLoS One 3:e2436
CrossRef
Google scholar
|
[22] |
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex . Nature 432:231–235
CrossRef
Google scholar
|
[23] |
Desjardins A, Bouvette J, Legault P (2014) Stepwise assembly of multiple Lin28 proteins on the terminal loop of let-7 miRNA precursors . Nucleic Acids Res 42:4615–4628
CrossRef
Google scholar
|
[24] |
Dueck A, Ziegler C, Eichner A, Berezikov E, Meister G (2012) microRNAs associated with the different human Argonaute proteins . Nucleic Acids Res 40:9850–9862
CrossRef
Google scholar
|
[25] |
Emmrich S, Rasche M, Schoning J, Reimer C, Keihani S, Maroz A, Xie Y, Li Z, Schambach A, Reinhardt D
CrossRef
Google scholar
|
[26] |
Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL, Slack FJ (2005) Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system . Dev Dyn 234:868–877
CrossRef
Google scholar
|
[27] |
Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing . Mol Cell Biol 27:3970–3981
CrossRef
Google scholar
|
[28] |
Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing . Cell 132:9–14
CrossRef
Google scholar
|
[29] |
Faehnle CR, Walleshauser J, Joshua-Tor L (2014) Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway . Nature 514:252–256
CrossRef
Google scholar
|
[30] |
Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight ? Nat Rev Genet 9:102–114
CrossRef
Google scholar
|
[31] |
Flynt AS, Greimann JC, Chung WJ, Lima CD, Lai EC (2010) MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila . Mol Cell 38:900–907
CrossRef
Google scholar
|
[32] |
Gerrits A, Walasek MA, Olthof S, Weersing E, Ritsema M, Zwart E, van Os R, Bystrykh LV, de Haan G ( 2012) Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells . Blood 119: 377–387
CrossRef
Google scholar
|
[33] |
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs . Nature 432:235–240
CrossRef
Google scholar
|
[34] |
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing . Cell 123:631–640
CrossRef
Google scholar
|
[35] |
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing . Mol Cell 27:91–105
CrossRef
Google scholar
|
[36] |
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing . Cell 106:23–34
CrossRef
Google scholar
|
[37] |
Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ (2005) The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans . Dev Cell 8:321–330
CrossRef
Google scholar
|
[38] |
Gunzburg MJ, Sivakumaran A, Pendini NR, Yoon JH, Gorospe M, Wilce MC, Wilce JA (2015) Cooperative interplay of let-7 mimic and HuR with MYC RNA . Cell Cycle.
CrossRef
Google scholar
|
[39] |
Ha M, Kim VN (2014) Regulation of microRNA biogenesis . Nat Rev Mol Cell Biol 15:509–524
CrossRef
Google scholar
|
[40] |
Hagan JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells . Nat Struct Mol Biol 16:1021–1025
CrossRef
Google scholar
|
[41] |
Hammell CM, Karp X, Ambros V(2009)Afeedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans . Proc Natl Acad Sci USA 106:18668–18673
CrossRef
Google scholar
|
[42] |
Hayes GD, Ruvkun G (2006) Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs . Cold Spring Harb Symp Quant Biol 71:21–27
CrossRef
Google scholar
|
[43] |
Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA . Mol Cell 32:276–284
CrossRef
Google scholar
|
[44] |
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation . Cell 138:696–708
CrossRef
Google scholar
|
[45] |
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs . Cell 151:521–532
CrossRef
Google scholar
|
[46] |
Hertel J, Bartschat S, Wintsche A, Otto C, Stadler PF (2012) Evolution of the let-7 microRNA family . RNA Biol 9:231–241
CrossRef
Google scholar
|
[47] |
Hibio N, Hino K, Shimizu E, Nagata Y, Ui-Tei K (2012) Stability of miRNA 5'terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy . Sci Rep 2:996
CrossRef
Google scholar
|
[48] |
Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA . Science 293:834–838
CrossRef
Google scholar
|
[49] |
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family . Cell 120:635–647
CrossRef
Google scholar
|
[50] |
Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J
CrossRef
Google scholar
|
[51] |
Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans . Genes Dev 15:2654–2659
CrossRef
Google scholar
|
[52] |
Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M (2009) HuR recruits let-7/RISC to repress c-Myc expression . Genes Dev 23:1743–1748
CrossRef
Google scholar
|
[53] |
Kim SK, Lee H, Han K, Kim SC, Choi Y, Park SW, Bak G, Lee Y, Choi JK, Kim TK
CrossRef
Google scholar
|
[54] |
Knight SW, Bass BL (2001)Arole for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans . Science 293:2269–2271
CrossRef
Google scholar
|
[55] |
Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family . Proc Natl Acad Sci USA 105:3903–3908
CrossRef
Google scholar
|
[56] |
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs . Science 294:853–858
CrossRef
Google scholar
|
[57] |
Lancman JJ, Caruccio NC, Harfe BD, Pasquinelli AE, Schageman JJ, Pertsemlidis A, Fallon JF (2005) Analysis of the regulation of lin-41 during chick and mouse limb development . Dev Dyn 234:948–960
CrossRef
Google scholar
|
[58] |
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M
CrossRef
Google scholar
|
[59] |
Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene8and ItsD. melanogaster homolog are required for miRNA biogenesis . Curr Biol 14:2162–2167
CrossRef
Google scholar
|
[60] |
Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans . Science 294:858–862
CrossRef
Google scholar
|
[61] |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S
CrossRef
Google scholar
|
[62] |
Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006)Theroleof PACT in the RNA silencing pathway . EMBOJ 25:522–532
CrossRef
Google scholar
|
[63] |
Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors . RNA 14:35–42
CrossRef
Google scholar
|
[64] |
Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA (2013a) Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing . Nucleic Acids Res 41:6568–6576
CrossRef
Google scholar
|
[65] |
Lee YT, de Vasconcellos JF, Yuan J, Byrnes C, Noh SJ, Meier ER, Kim KS, Rabel A, Kaushal M, Muljo SA
CrossRef
Google scholar
|
[66] |
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi . Science 305:1437–1441
CrossRef
Google scholar
|
[67] |
Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies . Nat Cell Biol 7:719–723
CrossRef
Google scholar
|
[68] |
Liu S, Xia Q, Zhao P, Cheng T, Hong K, Xiang Z (2007) Characterization and expression patterns of let-7 microRNA in the silkworm(Bombyx mori) . BMC Dev Biol 7:88
CrossRef
Google scholar
|
[69] |
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors . Science 303:95–98
CrossRef
Google scholar
|
[70] |
Ma WJ, Cheng S, Campbell C, Wright A, Furneaux H(1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein . J Biol Chem 271:8144–8151
CrossRef
Google scholar
|
[71] |
Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer . Science 311:195–198
CrossRef
Google scholar
|
[72] |
MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer . Nat Struct Mol Biol 14:934–940
CrossRef
Google scholar
|
[73] |
Malecki M, Viegas SC, Carneiro T, Golik P, Dressaire C, Ferreira MG, Arraiano CM (2013) The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway . EMBO J 32:1842–1854
CrossRef
Google scholar
|
[74] |
Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G
CrossRef
Google scholar
|
[75] |
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs . Mol Cell 15:185–197
CrossRef
Google scholar
|
[76] |
Moss EG (2007) Heterochronic genes and the nature of developmental time . Curr Biol 17:R425–R434
CrossRef
Google scholar
|
[77] |
Moss EG, Tang L(2003) Conservationofthe heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites . Dev Biol 258:432–442
CrossRef
Google scholar
|
[78] |
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P(2011) Molecular basis for interaction of let-7 microRNAs with Lin28 . Cell 147:1080–1091
CrossRef
Google scholar
|
[79] |
Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing . RNA 14:1539–1549
CrossRef
Google scholar
|
[80] |
Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16 Ink4a and p19 Arf expression . Cell 135:227–239
CrossRef
Google scholar
|
[81] |
O'Hara AJ, Wang L, Dezube BJ, Harrington WJ Jr, Damania B, Dittmer DP (2009) Tumor suppressor microRNAs are underrepresented in primary effusion lymphoma and Kaposi sarcoma . Blood 113:5938–5941
CrossRef
Google scholar
|
[82] |
Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways . Genes Dev 18:1655–1666
CrossRef
Google scholar
|
[83] |
Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila . Cell 130:89–100
CrossRef
Google scholar
|
[84] |
Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5' end of RNA for efficient and accurate processing . Nature 475:201–205
CrossRef
Google scholar
|
[85] |
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P
CrossRef
Google scholar
|
[86] |
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms . Cell 147:1066–1079
CrossRef
Google scholar
|
[87] |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G(2000) The 21-nucleotide let7 RNA regulates developmental timing in Caenorhabditis elegans . Nature 403:901–906
CrossRef
Google scholar
|
[88] |
Roush S, Slack FJ (2008) The let-7 family of microRNAs . Trends Cell Biol 18:505–516
CrossRef
Google scholar
|
[89] |
Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans . Cell 127:1193–1207
CrossRef
Google scholar
|
[90] |
Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing . Nature 448:83–86
CrossRef
Google scholar
|
[91] |
Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008)A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment . Nat Cell Biol 10:987–993
CrossRef
Google scholar
|
[92] |
Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ (2007) MicroRNA let-7a down regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells . Cancer Res 67:9762–9770
CrossRef
Google scholar
|
[93] |
Schulman BR, Esquela-Kerscher A, Slack FJ (2005) Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis . Dev Dyn 234:1046–1054
CrossRef
Google scholar
|
[94] |
Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth . Cell Res 18:549–557
CrossRef
Google scholar
|
[95] |
Segalla S, Pivetti S, Todoerti K, Chudzik MA, Giuliani EC, Lazzaro F, Volta V, Lazarevic D, Musco G, Muzi-Falconi M
CrossRef
Google scholar
|
[96] |
Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V (2002) The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster . Dev Biol 244:170–179
CrossRef
Google scholar
|
[97] |
Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V (2003) Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity . Dev Biol 259:9–18
CrossRef
Google scholar
|
[98] |
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V(2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation . Genome Biol 5:R13
CrossRef
Google scholar
|
[99] |
Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer . Cancer Res 67:11612–11620
CrossRef
Google scholar
|
[100] |
Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME (2007) Let-7 expression defines two differentiation stages of cancer . Proc Natl Acad Sci USA 104:11400–11405
CrossRef
Google scholar
|
[101] |
Sokol NS, Xu P, Jan YN, Ambros V (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis . Genes Dev 22:1591–1596
CrossRef
Google scholar
|
[102] |
Su H, Trombly MI, Chen J, Wang X(2009) Essentialand overlapping functions for mammalian Argonautes in microRNA silencing . Genes Dev 23:304–317
CrossRef
Google scholar
|
[103] |
Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY
CrossRef
Google scholar
|
[104] |
Suzuki HI, Katsura A, Miyazono K (2015) A role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B . Cancer Sci.
CrossRef
Google scholar
|
[105] |
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y
CrossRef
Google scholar
|
[106] |
Thomson JM, Parker J, Perou CM, Hammond SM (2004)A custom microarray platform for analysis of microRNA gene expression . Nat Methods 1:47–53
CrossRef
Google scholar
|
[107] |
Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer . Genes Dev 20:2202–2207
CrossRef
Google scholar
|
[108] |
Thornton JE, Gregory RI (2012) How does Lin28 let-7 control development and disease ? Trends Cell Biol 22:474–482
CrossRef
Google scholar
|
[109] |
Thornton JE, Chang HM, Piskounova E, Gregory RI (2012) Lin28mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7) . RNA 18:1875–1885
CrossRef
Google scholar
|
[110] |
Ustianenko D, Hrossova D, Potesil D, Chalupnikova K, Hrazdilova K, Pachernik J, Cetkovska K, Uldrijan S, Zdrahal Z, Vanacova S (2013) Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs . RNA 19:1632–1638
CrossRef
Google scholar
|
[111] |
Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A (2005) The contributions of dsRNA structure to Dicer specificity and efficiency . RNA 11:674–682
CrossRef
Google scholar
|
[112] |
Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28 . Science 320:97–100
CrossRef
Google scholar
|
[113] |
Wada T, Kikuchi J, Furukawa Y (2012) Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8 . EMBO Rep 13:142–149
CrossRef
Google scholar
|
[114] |
Wang Z, Lin S, Li JJ, Xu Z, Yao H, Zhu X, Xie D, Shen Z, Sze J, Li K
CrossRef
Google scholar
|
[115] |
Wilbert ML, Huelga SC, Kapeli K, Stark TJ, Liang TY, Chen SX, Yan BY, Nathanson JL, Hutt KR, Lovci MT
CrossRef
Google scholar
|
[116] |
Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A, Schumacher S, Nitsch R (2007) Post-transcriptional regulation of the let-7 microRNA during neural cell specification . FASEBJ 21:415–426
CrossRef
Google scholar
|
[117] |
Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O'Carroll D, Lai EC (2010) Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis . Proc Natl Acad Sci USA 107:15163–15168
CrossRef
Google scholar
|
[118] |
Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs . Genes Dev 17:3011–3016
CrossRef
Google scholar
|
[119] |
Yoda M, Cifuentes D, Izumi N, Sakaguchi Y, Suzuki T, Giraldez AJ, Tomari Y (2013) Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved precursor microRNAs . Cell Rep 5:715–726
CrossRef
Google scholar
|
[120] |
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J
CrossRef
Google scholar
|
[121] |
Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement forATP . EMBOJ 21:5875–5885
CrossRef
Google scholar
|
[122] |
Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III . Cell 118:57–68
CrossRef
Google scholar
|
/
〈 | 〉 |