Atg7 in development and disease: panacea or Pandora’s Box?
Jianhua Xiong
Atg7 in development and disease: panacea or Pandora’s Box?
Macroautophagy is an evolutionarily conserved intracellular degradation system used by life ranging from yeasts to mammals. The core autophagic machinery is composed of ATG (autophagy-related) protein constituents. One particular member of the ATG protein family, Atg7, has been the focus of recent research. Atg7 acts as an E1-like activating enzyme facilitating both microtubule-associated protein light chain 3 (LC3)-phosphatidylethanolamine and ATG12 conjugation. Thus, Atg7 stands at the hub of these two ubiquitin-like systems involving LC3 and Atg12 in autophagic vesicle expansion. In this review, I focus on the pleiotropic function of Atg7 in development, maintenance of health, and alternations of such control in disease.
autophagy / Atg7 / mouse model / development / disease
[1] |
Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi S
CrossRef
Google scholar
|
[2] |
Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466: 68−76
CrossRef
Google scholar
|
[3] |
Bhuiyan MS, Pattison JS, Osinska H, James J, Gulick J, McLendon PM, Hill JA, Sadoshima J, Robbins J (2013) Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Investig 123: 5284−5297
CrossRef
Google scholar
|
[4] |
Cadwell K, Patel KK, Komatsu M, Virgin HWt, Stappenbeck TS (2009) A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5: 250−252
CrossRef
Google scholar
|
[5] |
Chang TK, Shravage BV, Hayes SD, Powers CM, Simin RT, Wade Harper J, Baehrecke EH (2013) Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol 15: 1067−1078
CrossRef
Google scholar
|
[6] |
Chen SF, Kang ML, Chen YC, Tang HW, Huang CW, Li WH, Lin CP, Wang CY, Wang PY, Chen GC
CrossRef
Google scholar
|
[7] |
Chen D, Pang S, Feng X, Huang W, Hawley RG, Yan B (2013) Genetic analysis of the ATG7 gene promoter in sporadic Parkinson’s disease. Neurosci Lett 534: 193−198
CrossRef
Google scholar
|
[8] |
Cheng HC, Kim SR, Oo TF, Kareva T, Yarygina O, Rzhetskaya M, Wang C, During M, Talloczy Z, Tanaka K
CrossRef
Google scholar
|
[9] |
Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368: 651−662
CrossRef
Google scholar
|
[10] |
Codogno P, Meijer AJ (2010) Autophagy: a potential link between obesity and insulin resistance. Cell Metab 11: 449−451
CrossRef
Google scholar
|
[11] |
Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, Pirtoli L, Miracco C (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14: 574−586
CrossRef
Google scholar
|
[12] |
Coupe B, Ishii Y, Dietrich MO, Komatsu M, Horvath TL, Bouret SG (2012) Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab 15: 247−255
CrossRef
Google scholar
|
[13] |
Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284: 13843−13855
CrossRef
Google scholar
|
[14] |
De Meyer GR, Grootaert MO, Michiels CF, Kurdi A, Schrijvers DM, Martinet W (2015) Autophagy in vascular disease. Circ Res 116: 468−479
CrossRef
Google scholar
|
[15] |
Desai S, Liu Z, Yao J, Patel N, Chen J, Wu Y, Ahn EE, Fodstad O, Tan M (2013) Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem 288: 9165−9176
CrossRef
Google scholar
|
[16] |
Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277: 33105−33114
CrossRef
Google scholar
|
[17] |
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E
CrossRef
Google scholar
|
[18] |
Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25: 354−363
CrossRef
Google scholar
|
[19] |
Fujishima Y, Nishiumi S, Masuda A, Inoue J, Nguyen NM, Irino Y, Komatsu M, Tanaka K, Kutsumi H, Azuma T
CrossRef
Google scholar
|
[20] |
Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159: 1263−1276
CrossRef
Google scholar
|
[21] |
Gong K, Chen C, Zhan Y, Chen Y, Huang Z, Li W (2012) Autophagyrelated gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. J Biol Chem 287: 35576−35588
CrossRef
Google scholar
|
[22] |
Griffin LM, Cicchini L, Pyeon D (2013) Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes. Virology 437: 12−19
CrossRef
Google scholar
|
[23] |
Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, Ge W, Feng L, Lin X, Wang X
CrossRef
Google scholar
|
[24] |
Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, Pan Y, Li XJ (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8: 812−825
CrossRef
Google scholar
|
[25] |
Han J, Hou W, Goldstein LA, Stolz DB, Watkins SC, Rabinowich H (2014) A complex between Atg7 and caspase-9: a novel mechanism of cross-regulation between autophagy and apoptosis. J Biol Chem 289: 6485−6497
CrossRef
Google scholar
|
[26] |
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646−674
CrossRef
Google scholar
|
[27] |
Hernandez D, Torres CA, Setlik W, Cebrian C, Mosharov EV, Tang G, Cheng HC, Kholodilov N, Yarygina O, Burke RE
CrossRef
Google scholar
|
[28] |
Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, Czaja MJ, Friedman SL (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142: 938−946
CrossRef
Google scholar
|
[29] |
Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137: 773−783
CrossRef
Google scholar
|
[30] |
Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185: 7349−7357
CrossRef
Google scholar
|
[31] |
Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J, Komatsu M, Abeliovich A (2012a) Macroautophagy deficiency mediates agedependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 7: 48
CrossRef
Google scholar
|
[32] |
Inoue J, Nishiumi S, Fujishima Y, Masuda A, Shiomi H, Yamamoto K, Nishida M, Azuma T, Yoshida M (2012b) Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch Biochem Biophys 521: 95−101
CrossRef
Google scholar
|
[33] |
Jacquel A, Obba S, Boyer L, Dufies M, Robert G, Gounon P, Lemichez E, Luciano F, Solary E, Auberger P (2012) Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119: 4527−4531
CrossRef
Google scholar
|
[34] |
Jia K, Levine B (2007) Autophagy is required for dietary restrictionmediated life span extension in C. elegans. Autophagy 3: 597−599
CrossRef
Google scholar
|
[35] |
Jia K, Hart AC, Levine B (2007) Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3: 21−25
CrossRef
Google scholar
|
[36] |
Jia W, Pua HH, Li QJ, He YW (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186: 1564−1574
CrossRef
Google scholar
|
[37] |
Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z (2012) Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82: 1271−1283
CrossRef
Google scholar
|
[38] |
Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209: 1029−1047
CrossRef
Google scholar
|
[39] |
Juhasz G, Neufeld TP (2008) Drosophila Atg7: required for stress resistance, longevity and neuronal homeostasis, but not for metamorphosis. Autophagy 4: 357−358
CrossRef
Google scholar
|
[40] |
Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21: 3061−3066
CrossRef
Google scholar
|
[41] |
Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW
CrossRef
Google scholar
|
[42] |
Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD
CrossRef
Google scholar
|
[43] |
Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R (2012) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13: 258−265
CrossRef
Google scholar
|
[44] |
Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS, Lee SH, Cha GH, Kim JM, Lee ZW
CrossRef
Google scholar
|
[45] |
Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4: 740−743
CrossRef
Google scholar
|
[46] |
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y
CrossRef
Google scholar
|
[47] |
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E
CrossRef
Google scholar
|
[48] |
Komatsu M, Kominami E, Tanaka K (2006b) Autophagy and neurodegeneration. Autophagy 2: 315−317
CrossRef
Google scholar
|
[49] |
Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104: 14489−14494
CrossRef
Google scholar
|
[50] |
Kongara S, Kravchuk O, Teplova I, Lozy F, Schulte J, Moore D, Barnard N, Neumann CA, White E, Karantza V (2010) Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Mol Cancer Res 8: 873−884
CrossRef
Google scholar
|
[51] |
Kroemer G (2015) Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Investig 125: 1−4
CrossRef
Google scholar
|
[52] |
Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004−1010
CrossRef
Google scholar
|
[53] |
Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A
CrossRef
Google scholar
|
[54] |
Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14: 759−774
CrossRef
Google scholar
|
[55] |
Lee IH, Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284: 6322−6328
CrossRef
Google scholar
|
[56] |
Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Genome-wide analyses of steroid- and radiationtriggered programmed cell death in Drosophila. Curr Biol 13: 350−357
CrossRef
Google scholar
|
[57] |
Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336: 225−228
CrossRef
Google scholar
|
[58] |
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF (2014) Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 10: 572−587
CrossRef
Google scholar
|
[59] |
Lenz HD, Vierstra RD, Nurnberger T, Gust AA (2011) ATG7 contributes to plant basal immunity towards fungal infection. Plant Signal Behav 6: 1040−1042
CrossRef
Google scholar
|
[60] |
Li S, Du L, Zhang L, Hu Y, Xia W, Wu J, Zhu J, Chen L, Zhu F, Li C
CrossRef
Google scholar
|
[61] |
Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567−577
CrossRef
Google scholar
|
[62] |
Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12: 842−846
CrossRef
Google scholar
|
[63] |
Matsumoto N, Ezaki J, Komatsu M, Takahashi K, Mineki R, Taka H, Kikkawa M, Fujimura T, Takeda-Ezaki M, Ueno T
CrossRef
Google scholar
|
[64] |
McCoy F, Hurwitz J, McTavish N, Paul I, Barnes C, O’Hagan B, Odrzywol K, Murray J, Longley D, McKerr G
CrossRef
Google scholar
|
[65] |
Metzger S, Saukko M, Van Che H, Tong L, Puder Y, Riess O, Nguyen HP(2010) Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet 128: 453−459
CrossRef
Google scholar
|
[66] |
Metzger S, Walter C, Riess O, Roos RA, Nielsen JE, Craufurd D, Network RIotEHsD, Nguyen HP (2013) The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients. PLoS One 8: e68951
CrossRef
Google scholar
|
[67] |
Michiels CF, Fransen P, De Munck DG, De Meyer GR, Martinet W (2015) Defective autophagy in vascular smooth muscle cells alters contractility and Ca(2)(+) homeostasis in mice. Am J Physiol Heart Circ Physiol 308: H557−H567
CrossRef
Google scholar
|
[68] |
Minina EA, Sanchez-Vera V, Moschou PN, Suarez MF, Sundberg E, Weih M, Bozhkov PV (2013) Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis. Aging Cell 12: 327−329
CrossRef
Google scholar
|
[69] |
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728−741
CrossRef
Google scholar
|
[70] |
Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107: 832−837
CrossRef
Google scholar
|
[71] |
Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE
CrossRef
Google scholar
|
[72] |
Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M, Cantelli-Forti G, Berninger B, Conzelmann KK, Gotz M
CrossRef
Google scholar
|
[73] |
Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8: 105−137
CrossRef
Google scholar
|
[74] |
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458−467
CrossRef
Google scholar
|
[75] |
Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC (2013) Abeta secretion and plaque formation depend on autophagy. Cell Rep 5: 61−69
CrossRef
Google scholar
|
[76] |
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461: 654−658
CrossRef
Google scholar
|
[77] |
Nishiumi S, Fujishima Y, Inoue J, Masuda A, Azuma T, Yoshida M (2012) Autophagy in the intestinal epithelium is not involved in the pathogenesis of intestinal tumors. Biochem Biophys Res Commun 421: 768−772
CrossRef
Google scholar
|
[78] |
Nussenzweig SC, Verma S, Finkel T (2015) The role of autophagy in vascular biology. Circ Res 116: 480−488
CrossRef
Google scholar
|
[79] |
Pattison JS, Osinska H, Robbins J (2011) Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circ Res 109: 151−160
CrossRef
Google scholar
|
[80] |
Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330: 1344−1348
CrossRef
Google scholar
|
[81] |
Rasmussen SB, Horan KA, Holm CK, Stranks AJ, Mettenleiter TC, Simon AK, Jensen SB, Rixon FJ, He B, Paludan SR (2011) Activation of autophagy by alpha-herpes viruses in myeloid cells is mediated by cytoplasmic viral DNA through a mechanism dependent on stimulator of IFN genes. J Immunol 187: 5268−5276
CrossRef
Google scholar
|
[82] |
Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW
CrossRef
Google scholar
|
[83] |
Rossiter H, Konig U, Barresi C, Buchberger M, Ghannadan M, Zhang CF, Mlitz V, Gmeiner R, Sukseree S, Fodinger D
CrossRef
Google scholar
|
[84] |
Sagnier S, Daussy CF, Borel S, Robert-Hebmann V, Faure M, Blanchet FP, Beaumelle B, Biard-Piechaczyk M, Espert L (2015) Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol 89: 615−625
CrossRef
Google scholar
|
[85] |
Shrivastava S, Raychoudhuri A, Steele R, Ray R, Ray RB (2011) Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology 53: 406−414
CrossRef
Google scholar
|
[86] |
Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313: 1438−1441
CrossRef
Google scholar
|
[87] |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009a) Autophagy regulates lipid metabolism. Nature 458: 1131−1135
CrossRef
Google scholar
|
[88] |
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009b) Autophagy regulates adipose mass and differentiation in mice. J Clin Investig 119: 3329−3339
CrossRef
Google scholar
|
[89] |
Singh KK, Lovren F, Pan Y, Quan A, Ramadan A, Matkar PN, Ehsan M, Sandhu P, Mantella LE, Gupta N
CrossRef
Google scholar
|
[90] |
Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH (2008) Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48: 1054−1061
CrossRef
Google scholar
|
[91] |
Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105: 19211−19216
CrossRef
Google scholar
|
[92] |
Tashiro Y, Urushitani M, Inoue H, Koike M, Uchiyama Y, Komatsu M, Tanaka K, Yamazaki M, Abe M, Misawa H
CrossRef
Google scholar
|
[93] |
Teplova I, Lozy F, Price S, Singh S, Barnard N, Cardiff RD, Birge RB, Karantza V (2013) ATG proteins mediate efferocytosis and suppress inflammation in mammary involution. Autophagy 9: 459−475
CrossRef
Google scholar
|
[94] |
Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138: 2097−2110
CrossRef
Google scholar
|
[95] |
Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA, Wu XS, Rovira II, Fergusson MM, Weigert R
CrossRef
Google scholar
|
[96] |
Virgin HW, Levine B (2009) Autophagy genes in immunity. Nat Immunol 10: 461−470
CrossRef
Google scholar
|
[97] |
Walls KC, Ghosh AP, Franklin AV, Klocke BJ, Ballestas M, Shacka JJ, Zhang J, Roth KA (2010) Lysosome dysfunction triggers Atg7-dependent neural apoptosis. J Biol Chem 285: 10497−10507
CrossRef
Google scholar
|
[98] |
Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CM, Talla V, Tyler MFt, Lee JK, Laurie GW (2013) Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem 288: 18146−18161
CrossRef
Google scholar
|
[99] |
Wittkopf N, Gunther C, Martini E, Waldner M, Amann KU, Neurath MF, Becker C (2012) Lack of intestinal epithelial atg7 affects Paneth cell granule formation but does not compromise immune homeostasis in the gut. Clin Dev Immunol 2012: 278059
CrossRef
Google scholar
|
[100] |
Wu JJ, Quijano C, Chen E, Liu H, Cao L, Fergusson MM, Rovira II, Gutkind S, Daniels MP, Komatsu M
|
[101] |
Xue LY, Chiu SM, Oleinick NL (2010) Atg7 deficiency increases resistance of MCF-7 human breast cancer cells to photodynamic therapy. Autophagy 6: 248−255
CrossRef
Google scholar
|
[102] |
Yang C, Shogren KL, Goyal R, Bravo D, Yaszemski MJ, Maran A (2013) RNA-dependent protein kinase is essential for 2-methoxyestradiol-induced autophagy in osteosarcoma cells. PLoS One 8: e59406
CrossRef
Google scholar
|
[103] |
Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500−1502
CrossRef
Google scholar
|
[104] |
Zeng Y, Huo G, Mo Y, Wang W, Chen H (2015) MIR137 regulates starvation-induced autophagy by targeting ATG7. J Mol Neurosci 56: 815−821
CrossRef
Google scholar
|
[105] |
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009a) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106: 19860−19865
CrossRef
Google scholar
|
[106] |
Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, Ney PA (2009b) Mitochondrial clearance is regulated by Atg7-dependent and-independent mechanisms during reticulocyte maturation. Blood 114: 157−164
CrossRef
Google scholar
|
[107] |
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12: 665−675
CrossRef
Google scholar
|
[108] |
Zhao Y, Zhang CF, Rossiter H, Eckhart L, Konig U, Karner S, Mildner M, Bochkov VN, Tschachler E, Gruber F (2013) Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J Investig Dermatol 133: 1629−1637
CrossRef
Google scholar
|
[109] |
Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29: 451−462
CrossRef
Google scholar
|
[110] |
Zhu L, Du H, Shi M, Chen Z, Hang J (2013) ATG7 deficiency promote apoptotic death induced by cisplatin in human esophageal squamous cell carcinoma cells. Bull Cancer 100: 15−21
|
[111] |
Zhuo C, Ji Y, Chen Z, Kitazato K, Xiang Y, Zhong M, Wang Q, Pei Y, Ju H, Wang Y (2013) Proteomics analysis of autophagy-deficient Atg7−/− MEFs reveals a close relationship between F-actin and autophagy. Biochem Biophys Res Commun 437: 482−488
CrossRef
Google scholar
|
/
〈 | 〉 |