A peep into mitochondrial disorder:multifaceted from mitochondrial DNAmutations to nuclear gene modulation
Chao Chen, Ye Chen, Min-Xin Guan
A peep into mitochondrial disorder:multifaceted from mitochondrial DNAmutations to nuclear gene modulation
Mitochondrial genome is responsible for multiple human diseases in a maternal inherited pattern, yet phenotypes of patients in a same pedigree frequently vary largely. Genes involving in epigenetic modification, RNA processing, and other biological pathways, rather than “threshold effect” and environmental factors, provide more specific explanation to the aberrant phenotype. Thus, the double hit theory, mutations both in mitochondrial DNA and modifying genes aggravating the symptom, throws new light on mitochondrial dysfunction processes. In addition, mitochondrial retrograde signaling pathway that leads to reconfiguration of cell metabolism to adapt defects in mitochondria may as well play an active role. Here we review selected examples of modifier genes and mitochondrial retrograde signaling in mitochondrial disorders, which refine our understanding and will guide the rational design of clinical therapies.
mitochondrial disorder / mitochondrial DNA mutation / nuclear modifier gene / mitochondrial retrograde signaling
[1] |
Abbott JA, Francklyn CS, Robey-Bond SM (2014) Transfer RNA and human disease. Front Genet 5:158
|
[2] |
Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N,Demazy C
CrossRef
Google scholar
|
[3] |
Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49
CrossRef
Google scholar
|
[4] |
Biswas G, Guha M, Avadhani NG (2005) Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene 354:132–139
CrossRef
Google scholar
|
[5] |
Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15
CrossRef
Google scholar
|
[6] |
Bykhovskaya Y, Mengesha E, Wang D, Yang H, Estivill X, Shohat M
CrossRef
Google scholar
|
[7] |
Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252
CrossRef
Google scholar
|
[8] |
DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668
CrossRef
Google scholar
|
[9] |
Diodato D, Melchionda L, Haack TB, Dallabona C, Baruffini E, Donnini C
CrossRef
Google scholar
|
[10] |
Enriquez JA, Chomyn A, Attardi G (1995) MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet 10:47–55
CrossRef
Google scholar
|
[11] |
Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML
CrossRef
Google scholar
|
[12] |
Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L
CrossRef
Google scholar
|
[13] |
Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653
CrossRef
Google scholar
|
[14] |
Guan M-X, Fischel-Ghodsian N, Attardi G (1996) Biochemical evidence for nuclear gene involvement in phenotype of nonsyndromic deafness associated with mitochondrial 12S rRNA mutation. Hum Mol Genet 5:963–971
CrossRef
Google scholar
|
[15] |
Guan MX, Fischel-Ghodsian N, Attardi G (2001) Nuclear background determines biochemical phenotype in the deafnessassociated mitochondrial 12S rRNA mutation. Hum Mol Genet 10:573–580
CrossRef
Google scholar
|
[16] |
Guan MX, Yan Q, Li X, Bykhovskaya Y, Gallo-Teran J, Hajek P
CrossRef
Google scholar
|
[17] |
Guha M, Avadhani NG (2013) Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13:577–591
CrossRef
Google scholar
|
[18] |
Gusella JF, MacDonald ME, Lee J-M (2014) Genetic modifiers of Huntington’s disease. Mov Disord 29:1359–1365
CrossRef
Google scholar
|
[19] |
Harding AE, Sweeney MG, Govan GG, Riordan-Eva P (1995) Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet 57:77–86
|
[20] |
Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719
CrossRef
Google scholar
|
[21] |
Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141
CrossRef
Google scholar
|
[22] |
Li X, Guan M-X (2003) Identification and characterization of mouse GTPBP3 gene encoding a mitochondrial GTP-binding protein involved in tRNA modification. Biochem Biophys Res Commun 312:747–754
CrossRef
Google scholar
|
[23] |
Li X, Li R, Lin X, Guan MX (2002) Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 277:27256–27264
CrossRef
Google scholar
|
[24] |
Luhmann UF, Carvalho LS, Holthaus SM, Cowing JA, Greenaway S, Chu CJ
CrossRef
Google scholar
|
[25] |
McMillan HJ, Humphreys P, Smith A, Schwartzentruber J, Chakraborty P, Bulman DE,
CrossRef
Google scholar
|
[26] |
Meseguer S, Martinez-Zamora A, Garcia-Arumi E, Andreu AL, Armengod ME (2015) The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 24:167–184
CrossRef
Google scholar
|
[27] |
Nakajima J, Eminoglu TF, Vatansever G, Nakashima M, Tsurusaki Y, Saitsu H
CrossRef
Google scholar
|
[28] |
Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490
CrossRef
Google scholar
|
[29] |
Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159
CrossRef
Google scholar
|
[30] |
Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712
CrossRef
Google scholar
|
[31] |
Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580
CrossRef
Google scholar
|
[32] |
Parson W, Bandelt HJ (2007) Extended guidelines for mtDNA typing of population data in forensic science. Forensic Sci Int Genet 1:13–19
CrossRef
Google scholar
|
[33] |
Pellegrino MW, Nargund AM, Haynes CM (2013) Signaling the mitochondrial unfolded protein response. Biochim et Biophys Acta 1833:410–416
CrossRef
Google scholar
|
[34] |
Perli E, Giordano C, Pisano A, Montanari A, Campese AF, Reyes A
|
[35] |
Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P
|
[36] |
Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ
CrossRef
Google scholar
|
[37] |
Raimundo N (2014) Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 20:282–292
CrossRef
Google scholar
|
[38] |
Raimundo N, Song L, Shutt TE, McKay SE, Cotney J, Guan MX
CrossRef
Google scholar
|
[39] |
Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE (1995) The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 118(Pt 2):319–337
CrossRef
Google scholar
|
[40] |
Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A, Coppotelli G
CrossRef
Google scholar
|
[41] |
Ross JM, Coppotelli G, Hoffer BJ, Olson L (2014) Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci Rep4:6569
CrossRef
Google scholar
|
[42] |
Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695
CrossRef
Google scholar
|
[43] |
Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722
CrossRef
Google scholar
|
[44] |
Samuels DC, Schon EA, Chinnery PF (2004) Two direct repeats cause most human mtDNA deletions. Trends Genet 20:393–398
CrossRef
Google scholar
|
[45] |
Suzuki T, Nagao A (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329
CrossRef
Google scholar
|
[46] |
Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402
CrossRef
Google scholar
|
[47] |
van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PAA
CrossRef
Google scholar
|
[48] |
Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407
CrossRef
Google scholar
|
[49] |
Wallace DC (2012) Mitochondria and cancer. Nature reviews. Cancer 12:685–698
|
[50] |
Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5:a021220
|
[51] |
Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K (2000a) Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 467:175–178
|
[52] |
Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K (2000b) Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 275:4251–4257
|
[53] |
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59
CrossRef
Google scholar
|
[54] |
Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D
CrossRef
Google scholar
|
/
〈 | 〉 |