Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies
Shujing Wang, Huiqin Liu, Xinyi Zhang, Feng Qian
Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies
pathogens initiate their infections at the human mucosal surface. Therefore, mucosal vaccination, especially through oral or intranasal administration routes, is highly desired for infectious diseases. Meanwhile, protein-based antigens provide a safer alternative to the whole pathogen or DNA based ones in vaccine development. However, the unique biopharmaceutical hurdles that intranasally or orally delivered protein vaccines need to overcome before they reach the sites of targeting, the relatively low immunogenicity, as well as the low stability of the protein antigens, require thoughtful and fine-tuned mucosal vaccine formulations, including the selection of immunostimulants, the identification of the suitable vaccine delivery system, and the determination of the exact composition and manufacturing conditions. This review aims to provide an up-to-date survey of the protein antigen-based vaccine formulation development, including the usage of immunostimulants and the optimization of vaccine delivery systems for intranasal and oral administrations.
mucosal vaccine / protein antigen / adjuvant / immunostimulant / vaccine delivery system
[1] |
Abusugra I, Morein B (1999) Iscom is an efficient mucosal delivery system for Mycoplasma mycoides subsp. mycoides (MmmSC) antigens inducing high mucosal and systemic antibody responses. FEMS Immunol Med Microbiol23: 5-12
|
[2] |
Ali R, Kumar S, Naqvi RA, Sheikh IA, Rao DN (2013) Multiple antigen peptide consisting of B- and T-cell epitopes of F1 antigen of Y. pestis showed enhanced humoral and mucosal immune response in different strains of mice. Int Immunopharmacol15: 97-105
CrossRef
Google scholar
|
[3] |
Almeida AJ, Alpar HO (1996) Nasal delivery of vaccines. J Drug Target3: 455-467
CrossRef
Google scholar
|
[4] |
Alpar HO, Eyles JE, Williamson ED, Somavarapu S (2001) Intranasal vaccination against plague, tetanus and diphtheria. Adv Drug Deliv Rev51: 173-201
CrossRef
Google scholar
|
[5] |
Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol10: 787-796
CrossRef
Google scholar
|
[6] |
Bal SM, Slutter B, Verheul R, Bouwstra JA, Jiskoot W (2012) Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci45: 475-481
CrossRef
Google scholar
|
[7] |
Ball JM, Hardy ME, Atmar RL, Conner ME, Estes MK (1998) Oral immunization with recombinant Norwalk virus-like particles induces a systemic and mucosal immune response in mice. J Virol72: 1345-1353
|
[8] |
Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature392: 245-252
CrossRef
Google scholar
|
[9] |
Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V (2013) Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int J Pharm441: 636-642
CrossRef
Google scholar
|
[10] |
Baudner BC, O’Hagan DT (2010) Bioadhesive delivery systems for mucosal vaccine delivery. J Drug Target18: 752-770
CrossRef
Google scholar
|
[11] |
Belyakov IM, Moss B, Strober W, Berzofsky JA (1999) Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc Natl Acad Sci USA96: 4512-4517
CrossRef
Google scholar
|
[12] |
Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A (2007) Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci32: 278-290
CrossRef
Google scholar
|
[13] |
Borges O, Cordeiro-da-Silva A, Tavares J, Santarem N, de Sousa A, Borchard G, Junginger HE (2008) Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm69: 405-416
CrossRef
Google scholar
|
[14] |
Boyaka PN, Marinaro M, Jackson RJ, Menon S, Kiyono H, Jirillo E, McGhee JR (1999) IL-12 is an effective adjuvant for induction of mucosal immunity. J Immunol162: 122-128
|
[15] |
Brandhonneur N, Loizel C, Chevanne F, Wakeley P, Jestin A, Le Potier MF, Le Corre P (2009) Mucosal or systemic administration of rE2 glycoprotein antigen loaded PLGA microspheres. Int J Pharm373: 16-23
CrossRef
Google scholar
|
[16] |
Brunner R, Jensen-Jarolim E, Pali-Scholl I (2010) The ABC of clinical and experimental adjuvants–a brief overview. Immunol Lett128: 29-35
CrossRef
Google scholar
|
[17] |
Buffa V, Klein K, Fischetti L, Shattock RJ (2012) Evaluation of TLR agonists as potential mucosal adjuvants for HIV gp140 and tetanus toxoid in mice. Plos One7: e50529
CrossRef
Google scholar
|
[18] |
Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature478: 515-518
CrossRef
Google scholar
|
[19] |
Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol71: 3031-3038
|
[20] |
Carcaboso AM, Hernandez RM, Igartua M, Gascon AR, Rosas JE, Patarroyo ME, Pedraz JL (2003) Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm260: 273-282
CrossRef
Google scholar
|
[21] |
Challacombe SJ, Rahman D, Jeffery H, Davis SS, O’Hagan DT (1992) Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen. Immunology76: 164-168
|
[22] |
Chen YS, Hung YC, Lin WH, Huang GS (2010) Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology21: 195101
CrossRef
Google scholar
|
[23] |
Chen J, Li Z, Huang H, Yang Y, Ding Q, Mai J, Guo W, Xu Y (2011) Improved antigen cross-presentation by polyethyleneiminebased nanoparticles. Int J Nanomed6: 77-84
CrossRef
Google scholar
|
[24] |
Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH (2001) Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine20: 208-217
CrossRef
Google scholar
|
[25] |
Cortesi R, Ravani L, Rinaldi F, Marconi P, Drechsler M, Manservigi M, Argnani R, Menegatti E, Esposito E, Manservigi R (2013) Intranasal immunization in mice with non-ionic surfactants vesicles containing HSV immunogens: a preliminary study as possible vaccine against genital herpes. Int J Pharm440: 229-237
CrossRef
Google scholar
|
[26] |
Courtney AN, Nehete PN, Nehete BR, Thapa P, Zhou DP, Sastry KJ (2009) Alpha-galactosylceramide is an effective mucosal adjuvant for repeated intranasal or oral delivery of HIV peptide antigens. Vaccine27: 3335-3341
CrossRef
Google scholar
|
[27] |
Cox E, Verdonck F, Vanrompay D, Goddeeris B (2006) Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res37: 511-539
CrossRef
Google scholar
|
[28] |
Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG (2012) Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol509: 143-163
CrossRef
Google scholar
|
[29] |
Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release187: 133-144
CrossRef
Google scholar
|
[30] |
De Filette M, Fiers W, Martens W, Birkett A, Ramne A, Lowenadler B, Lycke N, Jou WM, Saelens X (2006) Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine24: 6597-6601
CrossRef
Google scholar
|
[31] |
De Gregorio E, Rappuoli R (2014) From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol14: 505-514
CrossRef
Google scholar
|
[32] |
Degim IT, Celebi N (2007) Controlled delivery of peptides and proteins. Curr Pharm Des13: 99-117
CrossRef
Google scholar
|
[33] |
Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM (2011) Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol29: 294-306
CrossRef
Google scholar
|
[34] |
Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y, Lockman L, Giannini S, Deschamps M (2010) Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix (TM), the AS04-adjuvanted HPV-16 and-18 cervical cancer vaccine. Hum Vaccines6: 407-419
CrossRef
Google scholar
|
[35] |
Devriendt B, De Geest BG, Goddeeris BM, Cox E (2012) Crossing the barrier: targeting epithelial receptors for enhanced oral vaccine delivery. J Control Release160: 431-439
CrossRef
Google scholar
|
[36] |
Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol10: 807-813
CrossRef
Google scholar
|
[37] |
Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y (2007) Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine25: 2832-2838
CrossRef
Google scholar
|
[38] |
Du L, Kou Z, Ma C, Tao X, Wang L, Zhao G, Chen Y, Yu F, Tseng CT, Zhou Y
CrossRef
Google scholar
|
[39] |
Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, Lu L, Wang L, Debnath AK, Zheng BJ
CrossRef
Google scholar
|
[40] |
Eastcott JW, Holmberg CJ, Dewhirst FE, Esch TR, Smith DJ, Taubman MA (2001) Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine19: 1636-1642
CrossRef
Google scholar
|
[41] |
Ebensen T, Schulze K, Riese P, Morr M, Guzman CA (2007) The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant. Clin Vaccine Immunol14: 952-958
CrossRef
Google scholar
|
[42] |
Ebensen T, Libanova R, Schulze K, Yevsa T, Morr M, Guzman CA (2011) Bis-(3’,5’)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine29: 5210-5220
CrossRef
Google scholar
|
[43] |
Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J (2007) “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother30: 378-395
CrossRef
Google scholar
|
[44] |
Ellis JA, West KH, Waldner C, Rhodes C (2005) Efficacy of a saponin-adjuvanted inactivated respiratory syncytial virus vaccine in calves. Can Vet J46: 155-162
|
[45] |
Eyles JE, Sharp GJ, Williamson ED, Spiers ID, Alpar HO (1998) Intra nasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plague in the mouse. Vaccine16: 698-707
CrossRef
Google scholar
|
[46] |
Eyles JE, Williamson ED, Spiers ID, Stagg AJ, Jones SM, Alpar HO (2000) Generation of protective immune responses to plague by mucosal administration of microsphere coencapsulated recombinant subunits. J Control Release63: 191-200
CrossRef
Google scholar
|
[47] |
Florindo HF, Pandit S, Lacerda L, Goncalves LMD, Alpar HO, Almeida AJ (2009) The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-epsiloncaprolactone-based nanoparticles. Biomaterials30: 879-891
CrossRef
Google scholar
|
[48] |
Fujita Y, Taguchi H (2011) Current status of multiple antigenpresenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Cent J5: 48
CrossRef
Google scholar
|
[49] |
Garcia A, De Sanctis JB (2014) An overview of adjuvant formulations and delivery systems. APMIS122: 257-267
CrossRef
Google scholar
|
[50] |
Garcia-Fuentes M, Alonso MJ (2012) Chitosan-based drug nanocarriers: where do we stand? J Control Release161: 496-504
CrossRef
Google scholar
|
[51] |
Garinot M, Fievez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jerome C, Marchand-Brynaert J
CrossRef
Google scholar
|
[52] |
Gherardi MM, Esteban M (2005) Recombinant poxviruses as mucosal vaccine vectors. J Gen Virol86: 2925-2936
CrossRef
Google scholar
|
[53] |
Gosselin EJ, Bitsaktsis C, Li Y, Iglesias BV (2009) Fc receptortargeted mucosal vaccination as a novel strategy for the generation of enhanced immunity against mucosal and nonmucosal pathogens. Arch Immunol Ther Exp (Warsz)57: 311-323
CrossRef
Google scholar
|
[54] |
Graham RL, Donaldson EF, Baric RS (2013) A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol11: 836-848
CrossRef
Google scholar
|
[55] |
Grgacic EV, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods40: 60-65
CrossRef
Google scholar
|
[56] |
Guerrero RA, Ball JM, Krater SS, Pacheco SE, Clements JD, Estes MK (2001) Recombinant Norwalk virus-like particles administered intranasally to mice induce systemic and mucosal (fecal and vaginal) immune responses. J Virol75: 9713-9722
CrossRef
Google scholar
|
[57] |
Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target15: 701-713
CrossRef
Google scholar
|
[58] |
Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev63: 943-955
CrossRef
Google scholar
|
[59] |
Hiroi T, Goto H, Someya K, Yanagita M, Honda M, Yamanaka N, Kiyono H (2001) HIV mucosal vaccine: nasal immunization with rBCG-V3J1 induces a long term V3J1 peptide-specific neutralizing immunity in Th1- and Th2-deficient conditions. J Immunol167: 5862-5867
CrossRef
Google scholar
|
[60] |
Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med11: S45-53
CrossRef
Google scholar
|
[61] |
Hu KF, Elvander M, Merza M, Akerblom L, Brandenburg A, Morein B (1998) The immunostimulating complex (ISCOM) is an efficient mucosal delivery system for respiratory syncytial virus (RSV) envelope antigens inducing high local and systemic antibody responses. Clin Exp Immunol113: 235-243
CrossRef
Google scholar
|
[62] |
Hu KF, Lovgren-Bengtsson K, Morein B (2001) Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv Drug Deliv Rev51: 149-159
CrossRef
Google scholar
|
[63] |
Huang X, Lu B, Yu W, Fang Q, Liu L, Zhuang K, Shen T, Wang H, Tian P, Zhang L
CrossRef
Google scholar
|
[64] |
Ibanez LI, Roose K, De Filette M, Schotsaert M, De Sloovere J, Roels S, Pollard C, Schepens B, Grooten J, Fiers W
CrossRef
Google scholar
|
[65] |
Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, Takahashi H, Sawa H, Chiba J, Kurata T
CrossRef
Google scholar
|
[66] |
Ichinohe T, Watanabe I, Tao E, Ito S, Kawaguchi A, Tamura S, Takahashi H, Sawa H, Moriyama M, Chiba J
CrossRef
Google scholar
|
[67] |
Igartua M, Hernandez RM, Esquisabel A, Gascon AR, Calvo MB, Pedraz JL (1998) Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres. J Control Release56: 63-73
CrossRef
Google scholar
|
[68] |
Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliver Rev51: 81-96
CrossRef
Google scholar
|
[69] |
Ishii M, Kojima N (2010) Mucosal adjuvant activity of oligomannosecoated liposomes for nasal immunization. Glycoconj J27: 115-123
CrossRef
Google scholar
|
[70] |
Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461: 788-792
CrossRef
Google scholar
|
[71] |
Jaganathan KS, Vyas SP (2006) Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine24: 4201-4211
CrossRef
Google scholar
|
[72] |
Jaganathan KS, Rao YU, Singh P, Prabakaran D, Gupta S, Jain A, Vyas SP (2005) Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(d, l-lactic-co-glycolic acid) versus chitosan microspheres. Int J Pharm294: 23-32
CrossRef
Google scholar
|
[73] |
Jain AK, Goyal AK, Mishra N, Vaidya B, Mangal S, Vyas SP (2010) PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm387: 253-262
CrossRef
Google scholar
|
[74] |
Jain S, Harde H, Indulkar A, Agrawal AK (2014) Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine10: 431-440
CrossRef
Google scholar
|
[75] |
Jariyapong P, Xing L, van Houten NE, Li TC, Weerachatyanukul W, Hsieh B, Moscoso CG, Chen CC, Niikura M, Cheng RH (2013) Chimeric hepatitis E virus-like particle as a carrier for oraldelivery. Vaccine31: 417-424
CrossRef
Google scholar
|
[76] |
Jiang T, Singh B, Li HS, Kim YK, Kang SK, Nah JW, Choi YJ, Cho CS (2014) Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials35: 2365-2373
CrossRef
Google scholar
|
[77] |
Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong WP, Wang LS, Nabel GJ (2013) Selfassembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature499: 102-106
CrossRef
Google scholar
|
[78] |
Kang SM, Guo L, Yao Q, Skountzou I, Compans RW (2004) Intranasal immunization with inactivated influenza virus enhances immune responses to coadministered simian-human immunodeficiency virus-like particle antigens. J Virol78: 9624-9632
CrossRef
Google scholar
|
[79] |
Kanzler H, Barrat FJ, Hessel EM, Coffman RL (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med13: 552-559
CrossRef
Google scholar
|
[80] |
Kavanagh OV, Earley B, Murray M, Foster CJ, Adair BM (2003) Antigen-specific IgA and IgG responses in calves inoculated intranasally with ovalbumin encapsulated in poly(dl-lactide-coglycolide) microspheres. Vaccine21: 4472-4480
CrossRef
Google scholar
|
[81] |
Kavanagh OV, Adair BM, Welsh MD, Earley B (2013) Local and systemic immune responses in mice to intranasal delivery of peptides representing bovine respiratory syncytial virus epitopes encapsulated in poly (DL-lactide-co-glycolide) microparticles. Res Vet Sci94: 809-812
CrossRef
Google scholar
|
[82] |
Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E
CrossRef
Google scholar
|
[83] |
Kayamuro H, Yoshioka Y, Abe Y, Katayama K, Yoshida T, Yamashita K, Yoshikawa T, Hiroi T, Itoh N, Kawai Y
CrossRef
Google scholar
|
[84] |
Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, Yoshikawa T, Kubota-Koketsu R, Ikuta K, Okamoto S
CrossRef
Google scholar
|
[85] |
Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL
CrossRef
Google scholar
|
[86] |
Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol2: 403-411
CrossRef
Google scholar
|
[87] |
Kim SH, Lee KY, Kim J, Park SM, Park BK, Jang YS (2006) Identification of a peptide enhancing mucosal and systemic immune responses against EGFP after oral administration in mice. Mol Cells21: 244-250
|
[88] |
Kim SH, Seo KW, Kim J, Lee KY, Jang YS (2010) The M celltargeting ligand promotes antigen delivery and induces antigenspecific immune responses in mucosal vaccination. J Immunol185: 5787-5795
CrossRef
Google scholar
|
[89] |
Klinman DM, Currie D, Gursel I, Verthelyi D (2004) Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev199: 201-216
CrossRef
Google scholar
|
[90] |
Klippstein R, Pozo D (2010) Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine6: 523-529
CrossRef
Google scholar
|
[91] |
Kobayashi T, Fukushima K, Sannan T, Saito N, Takiguchi Y, Sato Y, Hasegawa H, Ishikawa K (2013) Evaluation of the effectiveness and safety of chitosan derivatives as adjuvants for intranasal vaccines. Viral Immunol26: 133-142
CrossRef
Google scholar
|
[92] |
Kong IG, Sato A, Yuki Y, Nochi T, Takahashi H, Sawada S, Mejima M, Kurokawa S, Okada K, Sato S
CrossRef
Google scholar
|
[93] |
Koping-Hoggard M, Sanchez A, Alonso MJ (2005) Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines4: 185-196
CrossRef
Google scholar
|
[94] |
Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374: 546-549
CrossRef
Google scholar
|
[95] |
Krugman S (1982) The newly licensed hepatitis B vaccine. Characteristics and indications for use. JAMA247: 2012-2015
CrossRef
Google scholar
|
[96] |
Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004) A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine22: 2420-2424
CrossRef
Google scholar
|
[97] |
Lawson LB, Norton EB, Clements JD (2011) Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr Opin Immunol23: 414-420
CrossRef
Google scholar
|
[98] |
Lema D, Garcia A, De Sanctis JB (2014) HIV vaccines: a brief overview. Scand J Immunol80: 1-11
CrossRef
Google scholar
|
[99] |
Lemesre JL, Holzmuller P, Goncalves RB, Bourdoiseau G, Hugnet C, Cavaleyra M, Papierok G (2007) Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial. Vaccine25: 4223-4234
CrossRef
Google scholar
|
[100] |
Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, Woodrow M, Thierry-Carstensen B, Andersen P, Novicki D
CrossRef
Google scholar
|
[101] |
Lewis JS, Zaveri TD, Crooks CP 2nd, Keselowsky BG (2012) Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials33: 7221-7232
CrossRef
Google scholar
|
[102] |
Li T, Takeda N, Miyamura T (2001) Oral administration of hepatitis E virus-like particles induces a systemic and mucosal immune response in mice. Vaccine19: 3476-3484
CrossRef
Google scholar
|
[103] |
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC
CrossRef
Google scholar
|
[104] |
Li K, Chen D, Zhao X, Hu H, Yang C, Pang D (2011a) Preparation and investigation of Ulex europaeus agglutinin I-conjugated liposomes as potential oral vaccine carriers. Arch Pharm Res34: 1899-1907
CrossRef
Google scholar
|
[105] |
Li K, Zhao X, Xu S, Pang D, Yang C, Chen D (2011b) Application of Ulex europaeus agglutinin I-modified liposomes for oral vaccine: Ex Vivo bioadhesion and in Vivo immunity. Chem Pharm Bull (Tokyo)59: 618-623
CrossRef
Google scholar
|
[106] |
Libanova R, Ebensen T, Schulze K, Bruhn D, Norder M, Yevsa T, Morr M, Guzman CA (2010) The member of the cyclic dinucleotide family bis-(3′,5′)-cyclic dimeric inosine monophosphate exerts potent activity as mucosal adjuvant (vol 28, pg 2249, 2010). Vaccine28: 3625-3625
CrossRef
Google scholar
|
[107] |
Liu X, Chen DW, Xie LP, Zhang RQ (2003) Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J Control Release93: 293-300
CrossRef
Google scholar
|
[108] |
Liu L, Wei Q, Alvarez X, Wang H, Du Y, Zhu H, Jiang H, Zhou J, Lam P, Zhang L
CrossRef
Google scholar
|
[109] |
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J
CrossRef
Google scholar
|
[110] |
Lycke N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol12: 592-605
CrossRef
Google scholar
|
[111] |
Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng CT, Zhou Y, Du L, Jiang S (2014a) Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines. Vaccine32: 2100-2108
CrossRef
Google scholar
|
[112] |
Ma T, Wang L, Yang T, Ma G, Wang S (2014b) M-cell targeted polymeric lipid nanoparticles containing a toll-like receptor agonist to boost oral immunity. Int J Pharm473: 296-303
CrossRef
Google scholar
|
[113] |
Maisonneuve C, Bertholet S, Philpott DJ, De Gregorio E (2014) Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci USA111: 12294-12299
CrossRef
Google scholar
|
[114] |
Malik B, Goyal AK, Markandeywar TS, Rath G, Zakir F, Vyas SP (2012) Microfold-cell targeted surface engineered polymeric nanoparticles for oral immunization. J Drug Target20: 76-84
CrossRef
Google scholar
|
[115] |
Maloy KJ, Donachie AM, O’Hagan DT, Mowat AM (1994) Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology81: 661-667
|
[116] |
Mann JFS, Scales HE, Shakir E, Alexander J, Carter KC, Mullen AB, Ferro VA (2006) Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods38: 90-95
CrossRef
Google scholar
|
[117] |
Mann JF, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA (2009) Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine27: 3643-3649
CrossRef
Google scholar
|
[118] |
Mann JF, Stieh D, Klein K, de Stegmann DS, Cranage MP, Shattock RJ, McKay PF (2012) Transferrin conjugation confers mucosal molecular targeting to a model HIV-1 trimeric gp140 vaccine antigen. J Control Release158: 240-249
CrossRef
Google scholar
|
[119] |
Mansoor F, Earley B, Cassidy JP, Markey B, Foster C, Doherty S, Welsh MD (2014) Intranasal delivery of nanoparticles encapsulating BPI3V proteins induces an early humoral immune response in mice. Res Vet Sci96: 551-557
CrossRef
Google scholar
|
[120] |
Marasini N, Skwarczynski M, Toth I (2014) Oral delivery of nanoparticle- based vaccines. Expert Rev Vaccines13: 1361-1376
CrossRef
Google scholar
|
[121] |
Marciani DJ (2003) Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today8: 934-943
CrossRef
Google scholar
|
[122] |
Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol9: 287-293
CrossRef
Google scholar
|
[123] |
Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA93: 5335-5340
CrossRef
Google scholar
|
[124] |
Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science316: 1628-1632
CrossRef
Google scholar
|
[125] |
Mathew S, Lendlein A, Wischke C (2014) Characterization of protein-adjuvant coencapsulation in microparticles for vaccine delivery. Eur J Pharm Biopharm87: 403-407
CrossRef
Google scholar
|
[126] |
Matsuo K, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, Okada N (2011) Intranasal immunization with poly(gammaglutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J Control Release152: 310-316
CrossRef
Google scholar
|
[127] |
McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR (1984) Human hepatitis B vaccine from recombinant yeast. Nature307: 178-180
CrossRef
Google scholar
|
[128] |
McCluskie MJ, Davis HL (1998) Cutting edge: CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol161: 4463-4466
|
[129] |
McCluskie MJ, Weeratna RD, Krieg AM, Davis HL (2000) CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine19: 950-957
CrossRef
Google scholar
|
[130] |
McDermott MR, Heritage PL, Bartzoka V, Brook MA (1998) Polymergrafted starch microparticles for oral and nasal immunization. Immunol Cell Biol76: 256-262
CrossRef
Google scholar
|
[131] |
Meng S, Liu Z, Xu L, Li L, Mei S, Bao L, Deng W, Li L, Lei R, Xie L
CrossRef
Google scholar
|
[132] |
Minato S, Iwanaga K, Kakemi M, Yamashita S, Oku N (2003) Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity. J Control Release89: 189-197
CrossRef
Google scholar
|
[133] |
Mirchamsy H, Manhouri H, Hamedi M, Ahourai P, Fateh G, Hamzeloo Z (1996) Stimulating role of toxoids-laden liposomes in oral immunization against diphtheria and tetanus infections. Biologicals24: 343-350
CrossRef
Google scholar
|
[134] |
Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature308: 457-460
CrossRef
Google scholar
|
[135] |
Morris CB, Cheng E, Thanawastien A, Cardenas-Freytag L, Clements JD (2000) Effectiveness of intranasal immunization with HIV-gp160 and an HIV-1 env CTL epitope peptide (E7) in combination with the mucosal adjuvant LT(R192G). Vaccine18: 1944-1951
CrossRef
Google scholar
|
[136] |
Moschos SA, Bramwell VW, Somavarapu S, Alpar HO (2004) Adjuvant synergy: the effects of nasal coadministration of adjuvants. Immunol Cell Biol82: 628-637
CrossRef
Google scholar
|
[137] |
Mould JA, Drury JE, Frings SM, Kaupp UB, Pekosz A, Lamb RA, Pinto LH (2000) Permeation and activation of the M2 ion channel of influenza A virus. J Biol Chem275: 31038-31050
CrossRef
Google scholar
|
[138] |
Mowat AM, Smith RE, Donachie AM, Furrie E, Grdic D, Lycke N (1999) Oral vaccination with immune stimulating complexes. Immunol Lett65: 133-140
CrossRef
Google scholar
|
[139] |
Mummert ME (2005) Immunologic roles of hyaluronan. Immunol Res31: 189-206
CrossRef
Google scholar
|
[140] |
Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med350: 896-903
CrossRef
Google scholar
|
[141] |
Muzzarelli RA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs8: 292-312
CrossRef
Google scholar
|
[142] |
Nagase S, Doyama R, Yagi K, Kondoh M (2013) Recent advances in claudin-targeting technology. Biol Pharm Bull36: 708-714
CrossRef
Google scholar
|
[143] |
Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med5: 1157-1163
CrossRef
Google scholar
|
[144] |
Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol6: 148-158
CrossRef
Google scholar
|
[145] |
Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell86: 345-348
CrossRef
Google scholar
|
[146] |
Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T
CrossRef
Google scholar
|
[147] |
Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol8: 34-47
CrossRef
Google scholar
|
[148] |
Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N
CrossRef
Google scholar
|
[149] |
Noh YW, Hong JH, Shim SM, Park HS, Bae HH, Ryu EK, Hwang JH, Lee CH, Cho SH, Sung MH
CrossRef
Google scholar
|
[150] |
Oliveira CR, Rezende CM, Silva MR, Pego AP, Borges O, Goes AM (2012) A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLoS Negl Trop Dis6: e1894
CrossRef
Google scholar
|
[151] |
Olszewska W, Steward MW (2001) Nasal delivery of epitope based vaccines. Adv Drug Deliv Rev51: 161-171
CrossRef
Google scholar
|
[152] |
Pandey RS, Dixit VK (2010) Evaluation of ISCOM vaccines for mucosal immunization against hepatitis B. J Drug Target18: 282-291
CrossRef
Google scholar
|
[153] |
Park CG (2014) Vaccine strategies utilizing C-type lectin receptors on dendritic cells in vivo. Clin Exp Vaccine Res3: 149-154
CrossRef
Google scholar
|
[154] |
Park YM, Lee SJ, Kim YS, Lee MH, Cha GS, Jung ID, Kang TH, Han HD (2013) Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw13: 177-183
CrossRef
Google scholar
|
[155] |
Pashine A, Valiante NM, Ulmer JB (2005) Targeting the innate immune response with improved vaccine adjuvants. Nat Med11: S63-68
CrossRef
Google scholar
|
[156] |
Patel GB, Chen W (2010) Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Rev Vaccines9: 431-440
CrossRef
Google scholar
|
[157] |
Patel GB, Zhou HY, Ponce A, Chen WX (2007) Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine25: 8622-8636
CrossRef
Google scholar
|
[158] |
Patel GB, Ponce A, Zhou H, Chen W (2008) Safety of intranasally administered archaeal lipid mucosal vaccine adjuvant and delivery (AMVAD) vaccine in mice. Int J Toxicol27: 329-339
CrossRef
Google scholar
|
[159] |
Pedersen GK, Ebensen T, Gjeraker IH, Svindland S, Bredholt G, Guzman CA, Cox RJ (2011) Evaluation of the sublingual route for administration of influenza H5N1 virosomes in combination with the bacterial second messenger c-di-GMP. PLoS One6: e26973
CrossRef
Google scholar
|
[160] |
Petersson P, Hedenskog M, Alves D, Brytting M, Schroder U, Linde A, Lundkvist A (2010) The Eurocine (R) L3 adjuvants with subunit influenza antigens induce protective immunity in mice after intranasal vaccination. Vaccine28: 6491-6497
CrossRef
Google scholar
|
[161] |
Pogrebnyak N, Golovkin M, Andrianov V, Spitsin S, Smirnov Y, Egolf R, Koprowski H (2005) Severe acute respiratory syndrome (SARS) S protein production in plants: development of recombinant vaccine. Proc Natl Acad Sci USA102: 9062-9067
CrossRef
Google scholar
|
[162] |
Porporatto C, Bianco ID, Correa SG (2005) Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J Leukoc Biol78: 62-69
CrossRef
Google scholar
|
[163] |
Prevec L, Schneider M, Rosenthal KL, Belbeck LW, Derbyshire JB, Graham FL (1989) Use of human adenovirus-based vectors for antigen expression in animals. J Gen Virol70: 429-434
CrossRef
Google scholar
|
[164] |
Pun PB, Bhat AA, Mohan T, Kulkarni S, Paranjape R, Rao DN (2009) Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. Int Immunopharmacol9: 468-477
CrossRef
Google scholar
|
[165] |
Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev54: 561-587
CrossRef
Google scholar
|
[166] |
Rappuoli R, Aderem A (2011) A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature473: 463-469
CrossRef
Google scholar
|
[167] |
Rebelatto MC, Guimond P, Bowersock TL, HogenEsch H (2001) Induction of systemic and mucosal immune response in cattle by intranasal administration of pig serum albumin in alginate microparticles. Vet Immunol Immunopathol83: 93-105
CrossRef
Google scholar
|
[168] |
Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development. Trends Immunol30: 23-32
CrossRef
Google scholar
|
[169] |
Reineke JJ, Cho DY, Dingle YT, Morello AP 3rd, Jacob J, Thanos CG, Mathiowitz E (2013) Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres. Proc Natl Acad Sci USA110: 13803-13808
CrossRef
Google scholar
|
[170] |
Renegar KB, Small PA Jr, Boykins LG, Wright PF (2004) Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol173: 1978-1986
CrossRef
Google scholar
|
[171] |
Rivera-Hernandez T, Hartas J, Wu Y, Chuan YP, Lua LH, Good M, Batzloff MR, Middelberg AP (2013) Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine31: 1950-1955
CrossRef
Google scholar
|
[172] |
Rose MA, Zielen S, Baumann U (2012) Mucosal immunity and nasal influenza vaccination. Expert Rev Vaccines11: 595-607
CrossRef
Google scholar
|
[173] |
Rydell N, Sjoholm I (2004) Oral vaccination against diphtheria using polyacryl starch microparticles as adjuvant. Vaccine22: 1265-1274
CrossRef
Google scholar
|
[174] |
Rydell N, Sjoholm I (2005) Mucosal vaccination against diphtheria using starch microparticles as adjuvant for cross-reacting material (CRM197) of diphtheria toxin. Vaccine23: 2775-2783
CrossRef
Google scholar
|
[175] |
Rydell N, Stertman L, Sjoholm I (2005) Starch microparticles as vaccine adjuvant. Expert Opin Drug Deliv2: 807-828
CrossRef
Google scholar
|
[176] |
Sahdev P, Ochyl LJ, Moon JJ (2014) Biomaterials for nanoparticle vaccine delivery systems. Pharm Res31: 2563-2582
CrossRef
Google scholar
|
[177] |
Sajadi Tabassi SA, Tafaghodi M, Jaafari MR (2008) Induction of high antitoxin titers against tetanus toxoid in rabbits by intranasal immunization with dextran microspheres. Int J Pharm360: 12-17
CrossRef
Google scholar
|
[178] |
Sanchez MV, Ebensen T, Schulze K, Cargnelutti D, Blazejewska P, Scodeller EA, Guzman CA (2014) Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS One9: e104824
CrossRef
Google scholar
|
[179] |
Sanders MT, Brown LE, Deliyannis G, Pearse MJ (2005) ISCOMbased vaccines: the second decade. Immunol Cell Biol83: 119-128
CrossRef
Google scholar
|
[180] |
Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen CJ, Chen Q, Mason HS (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine26: 1846-1854
CrossRef
Google scholar
|
[181] |
Saraf S, Mishra D, Asthana A, Jain R, Singh S, Jain NK (2006) Lipid microparticles for mucosal immunization against hepatitis B. Vaccine24: 45-56
CrossRef
Google scholar
|
[182] |
Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnurch A (2011) In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials32: 4052-4057
CrossRef
Google scholar
|
[183] |
Sayin B, Somavarapu S, Li XW, Sesardic D, Senel S, Alpar OH (2009) TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci38: 362-369
CrossRef
Google scholar
|
[184] |
Scheerlinck JP, Greenwood DL (2008) Virus-sized vaccine delivery systems. Drug Discov Today13: 882-887
CrossRef
Google scholar
|
[185] |
Scolnick EM, McLean AA, West DJ, McAleer WJ, Miller WJ, Buynak EB (1984) Clinical evaluation in healthy adults of a hepatitis B vaccine made by recombinant DNA. JAMA251: 2812-2815
CrossRef
Google scholar
|
[186] |
Seder RA, Hill AV (2000) Vaccines against intracellular infections requiring cellular immunity. Nature406: 793-798
CrossRef
Google scholar
|
[187] |
Senchi K, Matsunaga S, Hasegawa H, Kimura H, Ryo A (2013) Development of oligomannose-coated liposome-based nasal vaccine against human parainfluenza virus type 3. Front Microbiol4: 346
CrossRef
Google scholar
|
[188] |
Shank-Retzlaff M, Wang F, Morley T, Anderson C, Hamm M, Brown M, Rowland K, Pancari G, Zorman J, Lowe R
CrossRef
Google scholar
|
[189] |
Sharma S, Mukkur TK, Benson HA, Chen Y (2009) Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci98: 812-843
CrossRef
Google scholar
|
[190] |
Shaw N, Ouyang SY, Liu ZJ (2013) Binding of bacterial secondary messenger molecule c di-GMP is a STING operation. Protein Cell4: 117-129
CrossRef
Google scholar
|
[191] |
Sheppard NC, Brinckmann SA, Gartlan KH, Puthia M, Svanborg C, Krashias G, Eisenbarth SC, Flavell RA, Sattentau QJ, Wegmann F (2014) Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int Immunol26: 531-538
CrossRef
Google scholar
|
[192] |
Shibata Y, Honda I, Justice JP, Van Scott MR, Nakamura RM, Myrvik QN (2001) Th1 adjuvant N-acetyl-D-glucosamine polymer upregulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infect Immun69: 6123-6130
CrossRef
Google scholar
|
[193] |
Shukla A, Khatri K, Gupta PN, Goyal AK, Mehta A, Vyas SP (2008) Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci11: 58-66
|
[194] |
Shukla A, Katare OP, Singh B, Vyas SP (2010) M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm385: 47-52
CrossRef
Google scholar
|
[195] |
Shukla A, Singh B, Katare OP (2011) Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol164: 820-827
CrossRef
Google scholar
|
[196] |
Singh M, O’Hagan D (1998) The preparation and characterization of polymeric antigen delivery systems for oral administration. Adv Drug Deliv Rev34: 285-304
CrossRef
Google scholar
|
[197] |
Singh M, Briones M, O’Hagan DT (2001) A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Control Release70: 267-276
CrossRef
Google scholar
|
[198] |
Singh J, Pandit S, Bramwell VW, Alpar HO (2006) Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods38: 96-105
CrossRef
Google scholar
|
[199] |
Skene CD, Sutton P (2006) Saponin-adjuvanted particulate vaccines for clinical use. Methods40: 53-59
CrossRef
Google scholar
|
[200] |
Skountzou I, Quan FS, Gangadhara S, Ye L, Vzorov A, Selvaraj P, Jacob J, Compans RW, Kang SM (2007) Incorporation of glycosylphosphatidylinositol-anchored granulocyte- macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J Virol81: 1083-1094
CrossRef
Google scholar
|
[201] |
Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol13: 592-605
CrossRef
Google scholar
|
[202] |
Sneh-Edri H, Likhtenshtein D, Stepensky D (2011) Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm8: 1266-1275
CrossRef
Google scholar
|
[203] |
Somavarapu S, Pandit S, Gradassi G, Bandera M, Ravichandran E, Alpar OH (2005) Effect of vitamin E TPGS on immune response to nasally delivered diphtheria toxoid loaded poly(caprolactone) microparticles. Int J Pharm298: 344-347
CrossRef
Google scholar
|
[204] |
Specht EA, Mayfield SP (2014) Algae-based oral recombinant vaccines. Front Microbiol5: 60
CrossRef
Google scholar
|
[205] |
Staats HF, Fielhauer JR, Thompson AL, Tripp AA, Sobel AE, Maddaloni M, Abraham SN, Pascual DW (2011) Mucosal targeting of a BoNT/A subunit vaccine adjuvanted with a mast cell activator enhances induction of BoNT/A neutralizing antibodies in rabbits. PLoS One6: e16532
CrossRef
Google scholar
|
[206] |
Stephenson I, Zambon MC, Rudin A, Colegate A, Podda A, Bugarini R, Del Giudice G, Minutello A, Bonnington S, Holmgren J
CrossRef
Google scholar
|
[207] |
Sui ZW, Chen QJ, Fang F, Zheng M, Chen Z (2010) Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine28: 7690-7698
CrossRef
Google scholar
|
[208] |
Sun HX, Xie Y, Ye YP (2009a) Advances in saponin-based adjuvants. Vaccine27: 1787-1796
CrossRef
Google scholar
|
[209] |
Sun HX, Xie Y, Ye YP (2009b) ISCOMs and ISCOMATRIX. Vaccine27: 4388-4401
CrossRef
Google scholar
|
[210] |
Svindland SC, Pedersen GK, Pathirana RD, Bredholt G, Nostbakken JK, Jul-Larsen A, Guzman CA, Montomoli E, Lapini G, Piccirella S
CrossRef
Google scholar
|
[211] |
Tafaghodi M, Rastegar S (2010) Preparation and in vivo study of dry powder microspheres for nasal immunization. J Drug Target18: 235-242
CrossRef
Google scholar
|
[212] |
Takahashi H (2003) Antigen presentation in vaccine development. Comp Immunol Microbiol Infect Dis26: 309-328
CrossRef
Google scholar
|
[213] |
Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA85: 5409-5413
CrossRef
Google scholar
|
[214] |
Tamura S, Kurata T (2004) Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Jpn J Infect Dis57: 236-247
|
[215] |
Tao W, Ziemer KS, Gill HS (2014) Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond)9: 237-251
CrossRef
Google scholar
|
[216] |
Thomas C, Gupta V, Ahsan F (2009) Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. Int J Pharm379: 41-50
CrossRef
Google scholar
|
[217] |
Tiwari S, Agrawal GP, Vyas SP (2010) Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine (Lond)5: 1617-1640
CrossRef
Google scholar
|
[218] |
Tiwari B, Agarwal A, Kharya AK, Lariya N, Saraogi G, Agrawal H, Agrawal GP (2011a) Immunoglobulin immobilized liposomal constructs for transmucosal vaccination through nasal route. J Liposome Res21: 181-193
CrossRef
Google scholar
|
[219] |
Tiwari S, Verma SK, Agrawal GP, Vyas SP (2011b) Viral protein complexed liposomes for intranasal delivery of hepatitis B surface antigen. Int J Pharm413: 211-219
CrossRef
Google scholar
|
[220] |
Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res15: 270-275
CrossRef
Google scholar
|
[221] |
Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov4: 145-160
CrossRef
Google scholar
|
[222] |
Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol13: 251-276
CrossRef
Google scholar
|
[223] |
Tripathi V, Chitralekha KT, Bakshi AR, Tomar D, Deshmukh RA, Baig MA, Rao DN (2006) Inducing systemic and mucosal immune responses to B-T construct of F1 antigen of Yersinia pestis in microsphere delivery. Vaccine24: 3279-3289
CrossRef
Google scholar
|
[224] |
Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O, Huang Y, Schlesinger SJ, Colonna M, Steinman RM (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA105: 2574-2579
CrossRef
Google scholar
|
[225] |
Turner TM, Jones LP, Tompkins SM, Tripp RA (2013) A novel influenza virus hemagglutinin-respiratory syncytial virus (RSV) fusion protein subunit vaccine against influenza and RSV. J Virol87: 10792-10804
CrossRef
Google scholar
|
[226] |
Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B (2011) Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One6: e17642
CrossRef
Google scholar
|
[227] |
van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan for mucosal vaccination. Adv Drug Deliv Rev52: 139-144
CrossRef
Google scholar
|
[228] |
van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR (2000) Cutting edge: The mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol165: 4778-4782
CrossRef
Google scholar
|
[229] |
van Riet E, Ainai A, Suzuki T, Kersten G, Hasegawa H (2014) Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv Drug Deliv Rev74: 28-34
CrossRef
Google scholar
|
[230] |
Velasquez LS, Shira S, Berta AN, Kilbourne J, Medi BM, Tizard I, Ni Y, Arntzen CJ, Herbst-Kralovetz MM (2011) Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine29: 5221-5231
CrossRef
Google scholar
|
[231] |
Vicente S, Peleteiro M, Diaz-Freitas B, Sanchez A, Gonzalez-Fernandez A, Alonso MJ (2013) Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: a needle-free vaccination strategy. J Control Release172: 773-781
CrossRef
Google scholar
|
[232] |
Vila A, Sanchez A, Evora C, Soriano I, Vila Jato JL, Alonso MJ (2004) PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med17: 174-185
CrossRef
Google scholar
|
[233] |
Vila A, Sanchez A, Evora C, Soriano I, McCallion O, Alonso MJ (2005) PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm292: 43-52
CrossRef
Google scholar
|
[234] |
Wang X, Meng D (2014) Innate endogenous adjuvants prime to desirable immune responses via mucosal routes, Protein Cell, 1-15
CrossRef
Google scholar
|
[235] |
Wang L, Cheng C, Ko SY, Kong WP, Kanekiyo M, Einfeld D, Schwartz RM, King CR, Gall JG, Nabel GJ (2009) Delivery of human immunodeficiency virus vaccine vectors to the intestine induces enhanced mucosal cellular immunity. J Virol83: 7166-7175
CrossRef
Google scholar
|
[236] |
Wegmann F, Gartlan KH, Harandi AM, Brinckmann SA, Coccia M, Hillson WR, Kok WL, Cole S, Ho LP, Lambe T
CrossRef
Google scholar
|
[237] |
Wikingsson LD, Sjoholm I (2002) Polyacryl starch microparticles as adjuvant in oral immunisation, inducing mucosal and systemic immune responses in mice. Vaccine20: 3355-3363
CrossRef
Google scholar
|
[238] |
Williamson ED, Oyston PC (2013) Protecting against plague: towards a next-generation vaccine. Clin Exp Immunol172: 1-8
CrossRef
Google scholar
|
[239] |
Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem279: 3197-3201
CrossRef
Google scholar
|
[240] |
Wu T, Li SW, Zhang J, Ng MH, Xia NS, Zhao Q (2012) Hepatitis E vaccine development: a 14 year odyssey. Hum Vaccin Immunother8: 823-827
CrossRef
Google scholar
|
[241] |
Yoo MK, Kang SK, Choi JH, Park IK, Na HS, Lee HC, Kim EB, Lee NK, Nah JW, Choi YJ
CrossRef
Google scholar
|
[242] |
Yoshikawa T, Suzuki Y, Nomoto A, Sata T, Kurata T, Tamura S (2002) Antibody responses and protection against influenza virus infection in different congenic strains of mice immunized intranasally with adjuvant-combined A/Beijing/262/95 (H1N1) virus hemagglutinin or neuraminidase. <?Pub Caret?>Vaccine21: 60-66
CrossRef
Google scholar
|
[243] |
Zhang P, Yang QB, Marciani DJ, Martin M, Clements JD, Michalek SM, Katz J (2003) Effectiveness of the quillaja saponin semisynthetic analog GPI-0100 in potentiating mucosal and systemic responses to recombinant HagB from Porphyromonas gingivalis. Vaccine21: 4459-4471
CrossRef
Google scholar
|
[244] |
Zhang N, Jiang S, Du L (2014) Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines13: 761-774
CrossRef
Google scholar
|
[245] |
Zhao Q, Li S, Yu H, Xia N, Modis Y (2013) Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol31: 654-663
CrossRef
Google scholar
|
[246] |
Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP (2014) Nanoparticle vaccines. Vaccine32: 327-337
CrossRef
Google scholar
|
[247] |
Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters RC, Kirk J, Eppler B, Klinman DM, Sui Y
CrossRef
Google scholar
|
/
〈 | 〉 |