SIRTain regulators of premature senescence and accelerated aging
Shrestha Ghosh, Zhongjun Zhou
SIRTain regulators of premature senescence and accelerated aging
The sirtuin proteins constitute class III histone deacetylases (HDACs). These evolutionarily conserved NAD+-dependent enzymes form an important component in a variety of cellular and biological processes with highly divergent as well as convergent roles in maintaining metabolic homeostasis, safeguarding genomic integrity, regulating cancer metabolism and also inflammatory responses. Amongst the seven known mammalian sirtuin proteins, SIRT1 has gained much attention due to its widely acknowledged roles in promoting longevity and ameliorating age-associated pathologies. The contributions of other sirtuins in the field of aging are also gradually emerging. Here, we summarize some of the recent discoveries in sirtuins biology which clearly implicate the functions of sirtuin proteins in the regulation of premature cellular senescence and accelerated aging. The roles of sirtuins in various cellular processes have been extrapolated to draw inter-linkage with anti-aging mechanisms. Also, the latest findings on sirtuins which might have potential effects in the process of aging have been reviewed.
sirtuins / senescence / premature aging / longevity
[1] |
Abdelmohsen K, Pullmann R Jr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA
CrossRef
Google scholar
|
[2] |
Bauer I, Grozio A, Lasigliè D, Basile G, Sturla L, Magnone M, Sociali G, Soncini D, Caffa I, Poggi A
CrossRef
Google scholar
|
[3] |
Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT, Chen D (2013) SIRT3 reverses aging-associated degeneration. Cell reports3: 319-327
CrossRef
Google scholar
|
[4] |
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, Hoddinot M, Sutphin GL, Leko V, Mcelwee JJ
CrossRef
Google scholar
|
[5] |
Cai Y, Sheng ZY, Liang SX (2014) Radiosensitization Effect of Overexpression of Adenovirus-mediated SIRT6 on A549 Nonsmall Cell Lung Cancer Cells. Asian Pacific Journal of Cancer Prevention15: 7297-7301
CrossRef
Google scholar
|
[6] |
Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends in Endocrinology & Metabolism25: 138-145
CrossRef
Google scholar
|
[7] |
Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends in molecular medicine13: 64-71
CrossRef
Google scholar
|
[8] |
Chen J, Xavier S, Moskowitz-Kassai E, Chen R, Lu CY, Sanduski K, Spes A, Turk B, Goligorsky MS (2012) Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. The American journal of pathology180: 973-983
CrossRef
Google scholar
|
[9] |
Cheng HL, Mostoslavsky R, Saito SI, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)- deficient mice. ProcNatlAcadSci100: 10794-10799
CrossRef
Google scholar
|
[10] |
Choi JE, Mostoslavsky R (2014) Sirtuins, metabolism, and DNA repair. Current Opinion In Genetics & Development26: 24-32
CrossRef
Google scholar
|
[11] |
Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito SI, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N
CrossRef
Google scholar
|
[12] |
de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Frontiers in pharmacology3: 82
CrossRef
Google scholar
|
[13] |
Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao PH, Qiu Y, Zhao Y
CrossRef
Google scholar
|
[14] |
Dominy JE Jr, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, Ruan HB, Feldman J, Pierce K, Mostoslavsky R
CrossRef
Google scholar
|
[15] |
Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. The Journal of Neuroscience32: 124-132
CrossRef
Google scholar
|
[16] |
Elhanati S, Kanfi Y, Varvak A, Roichman A, Carmel-Gross I, Barth S, Gibor G, Cohen HY (2013) Multiple regulatory layers of SREBP1/2 by SIRT6. Cell reports4: 905-912
CrossRef
Google scholar
|
[17] |
Fu J, Jin J, Cichewicz RH, Hageman SA, Ellis TK, Xiang L, Peng Q, Jiang M, Arbez N, Hotaling K
CrossRef
Google scholar
|
[18] |
Ghosh S, Zhou Z (2014) Genetics of aging, progeria and lamin disorders. Current opinion in genetics & development26: 41-46
CrossRef
Google scholar
|
[19] |
Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends in Genetics30: 271-286
CrossRef
Google scholar
|
[20] |
Glorioso C, Oh S, Douillard GG, Sibille E (2011) Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism. Neurobiology of disease41: 279-290
CrossRef
Google scholar
|
[21] |
Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J, Bennett M(2013) Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation127: 386-396
CrossRef
Google scholar
|
[22] |
Gorospe M, de Cabo R (2008) AsSIRTing the DNA damage response. Trends in cell biology18: 77-83
CrossRef
Google scholar
|
[23] |
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G
CrossRef
Google scholar
|
[24] |
Herranz D, Muñoz-Martin M, Cañamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Comm1: 3
CrossRef
Google scholar
|
[25] |
Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stancakova A, Goetzmanz E, Lam MM, Schwer B
CrossRef
Google scholar
|
[26] |
Ho L, Titus AS, Banerjee KK, George S, Lin W, Deota S, Saha AK, Nakamura K, Gut P, Verdin E
|
[27] |
Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in pharmacological sciences35: 146-154
CrossRef
Google scholar
|
[28] |
Jeong J, Juhn K, Lee H, Kim S, Min B, Lee K, Cho MH, Park GH, Lee K (2007) SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental and Molecular Medicine39: 8
CrossRef
Google scholar
|
[29] |
Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci108: 14608-14613
CrossRef
Google scholar
|
[30] |
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Dev13: 2570-2580
CrossRef
Google scholar
|
[31] |
Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIPdeacetylation. Science329: 1348-1353
CrossRef
Google scholar
|
[32] |
Kamel C, Abrol M, Jardine K, He X, McBurney MW (2006) Sirt1 fails to affect p53-mediated biological functions. Aging cell5: 81-88
CrossRef
Google scholar
|
[33] |
Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar- Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature483: 218-221
CrossRef
Google scholar
|
[34] |
Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Onqaiui KC, Boxer LD, Chang HY
CrossRef
Google scholar
|
[35] |
Kim W, Kim JE (2013) SIRT7 an emerging sirtuin: deciphering newer rolES. JPP64: 531-534
|
[36] |
Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazqzuez-Ortiz G, Jeong WI, Park O, Ki SH
CrossRef
Google scholar
|
[37] |
Kim MY, Kang EL, Ham SA, Hwang JS, Yoo TS, Lee H, Paek KS, Park C, Lee HT, Kim JH
CrossRef
Google scholar
|
[38] |
Kim JK, Noh JH, Jung KH, Eun JW, Bae HJ, Kim MG, Chang YG, Shen Q, Park WS, Lee JY
CrossRef
Google scholar
|
[39] |
Kincaid B, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Frontiers in aging neuroscience5: 48
CrossRef
Google scholar
|
[40] |
Kugel S, Mostoslavsky R (2012) Chromatin and beyond: the multitasking roles for SIRT6. Trends in biochemical sciences39: 72-81
CrossRef
Google scholar
|
[41] |
Kulkarni SS, Cantó C (2014) The molecular targets of Resveratrol. Biochimicaet Biophysica Acta (BBA)-Molecular Basis of Disease14(8): 557-562
|
[42] |
Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO journal21: 2383-2396
CrossRef
Google scholar
|
[43] |
Lappas M (2012) Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators of Inflammation2012: 597514
CrossRef
Google scholar
|
[44] |
Laurent G, de Boer VC, Finley LW, Sweeney M, Lu H, Schug TT, Cen Y, Jeong SM, Li X, Sauve AA
CrossRef
Google scholar
|
[45] |
Lee HS, Ka SO, Lee SM, Lee SI, Park JW, Park BH (2013) Overexpression of Sirtuin 6 Suppresses Inflammatory Responses and Bone Destruction in Mice With Collagen-Induced Arthritis. Arthritis & Rheumatism65: 1776-1785
CrossRef
Google scholar
|
[46] |
Lee N, Kim DK, Kim ES, Park SJ, Kwon JH, Shin J, Park SM, Moon YH, Wang HJ, Gho YS
CrossRef
Google scholar
|
[47] |
Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, Ge Q, Gu W, Orren D, Luo J (2008) Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J BiolChem283: 7590-7598
CrossRef
Google scholar
|
[48] |
Li Y, Dai D, Lu Q, Fei M, Li M, Wu X (2013) Sirt2 suppresses glioma cell growth through targeting NF-ĸB-miR-21 axis. BiochemBiophys Res Commun441: 661-667
CrossRef
Google scholar
|
[49] |
Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ
CrossRef
Google scholar
|
[50] |
Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y
CrossRef
Google scholar
|
[51] |
Luna A, Aladjem MI, Kohn KW (2013) SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome integrity4: 6
CrossRef
Google scholar
|
[52] |
Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science332: 1443-1446
CrossRef
Google scholar
|
[53] |
Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (2012) Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA109: 11800-11805
CrossRef
Google scholar
|
[54] |
McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL
|
[55] |
Mellini P, Valente S, Mai A (2014) Sirtuin modulators: an updated patent review (2012-2014). Expert Opinion on Therapeutic Patents (0), 1-11
CrossRef
Google scholar
|
[56] |
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G
CrossRef
Google scholar
|
[57] |
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell16: 4623-4635
CrossRef
Google scholar
|
[58] |
Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC
CrossRef
Google scholar
|
[59] |
Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle8: 2664-2666
CrossRef
Google scholar
|
[60] |
Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C
CrossRef
Google scholar
|
[61] |
Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY (2014) SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer research74: 5925-5933
CrossRef
Google scholar
|
[62] |
Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Alway SE (2014) Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging6: 820-834
|
[63] |
Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PloS one8: e54514
CrossRef
Google scholar
|
[64] |
Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM
CrossRef
Google scholar
|
[65] |
Nakagawa T, Guarente L (2009) Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging1: 578-581
|
[66] |
Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Geneviève D, Hadj-Rabia S, Gaudy-Marqueste C, Smitt HS, Vabres P
CrossRef
Google scholar
|
[67] |
Nguyen P, Lee S, Lorang-Lenis D, Trepel J, Smart DK (2014) SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol Cancer Res12: 1244-1253
CrossRef
Google scholar
|
[68] |
North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S, Dai J, Baker DJ, Cen Y, Wu LE, Sauve AA
CrossRef
Google scholar
|
[69] |
Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. Journal of Molecular and Cellular Cardiology43: 571-579
CrossRef
Google scholar
|
[70] |
Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 28: 1634-1639
CrossRef
Google scholar
|
[71] |
Paredes S, Villanova L, Chua KF (2014) Molecular Pathways: Emerging Roles of Mammalian Sirtuin SIRT7 in Cancer. Clinical Cancer Research20: 1741-1746
CrossRef
Google scholar
|
[72] |
Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Mol Cell Biol29: 4116-4129
CrossRef
Google scholar
|
[73] |
Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P, Sahu AK, Li B
CrossRef
Google scholar
|
[74] |
Rehan L, Laszki-Szcząchor K, Sobieszczańska M, Polak-Jonkisz D (2014) SIRT1 and NAD as regulators of ageing. Life sciences105: 1-6
CrossRef
Google scholar
|
[75] |
Rimmelé P, Bigarella CL, Liang R, Izac B, Dieguez-Gonzalez R, Barbet G, Donovan M, Brugnara C, Blander JM, Sinclair DA
CrossRef
Google scholar
|
[76] |
Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C (2009) Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer immunology, immunotherapy58: 1909-1917
CrossRef
Google scholar
|
[77] |
Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai SI (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab18: 416-430
CrossRef
Google scholar
|
[78] |
Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene26: 5489-5504
CrossRef
Google scholar
|
[79] |
Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, Verdin E (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY)2(7): 415-431
|
[80] |
Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-olive MM
CrossRef
Google scholar
|
[81] |
Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y
CrossRef
Google scholar
|
[82] |
Schreiber KH, Kennedy BK (2013) When lamins go bad: nuclear structure and disease. Cell152: 1365-1375
CrossRef
Google scholar
|
[83] |
Sebastián C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D
CrossRef
Google scholar
|
[84] |
Shih J, Donmez G (2013) Mitochondrial sirtuins as therapeutic targets for age-related disorders. Genes & cancer4: 91-96
CrossRef
Google scholar
|
[85] |
Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K
CrossRef
Google scholar
|
[86] |
Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS
CrossRef
Google scholar
|
[87] |
Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V
CrossRef
Google scholar
|
[88] |
Thirumurthi U, Shen J, Xia W, LaBaff AM, Wei Y, Li CW, Chang WC, Chen CH, Lin HK, Yu D
CrossRef
Google scholar
|
[89] |
Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S
CrossRef
Google scholar
|
[90] |
Tran D, Bergholz J, Zhang H, He H, Wang Y, Zhang Y, Li Q, Kirkland JL, Xiao ZX (2014) Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell13: 669-678
CrossRef
Google scholar
|
[91] |
Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmüller L, Gatz SA (2010) Role of SIRT1 in homologous recombination. DNA repair9: 383-393
CrossRef
Google scholar
|
[92] |
Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Brawn T, Bober E (2008a) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation Research102: 703-710
CrossRef
Google scholar
|
[93] |
Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E (2008b) Sirt7- dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J PhysiolPharmacol59: 201-212
|
[94] |
Van Meter M, Mao Z, Gorbunova V, Seluanov A (2011) SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell cycle10: 3153-3158
CrossRef
Google scholar
|
[95] |
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell16: 93-105
CrossRef
Google scholar
|
[96] |
Vassallo PF, Simoncini S, Ligi I, Chateau AL, Bachelier R, Robert S, Morere J, Fernandez S, Guillet B, Marcelli M
CrossRef
Google scholar
|
[97] |
Wang F, Tong Q (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ. MolBiolCell20: 801-808
CrossRef
Google scholar
|
[98] |
Wang F, Nguyen M, Qin F, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging cell6: 505-514
CrossRef
Google scholar
|
[99] |
Xiao C, Wang RH, Lahusen TJ, Park O, Bertola A, Maruyama T, Reynolds D, Chen Q, Xu X, Young HA
CrossRef
Google scholar
|
[100] |
Xu Z, Zhang L, Fei X, Yi X, Li W, Wang Q (2014) The miR-29b–Sirt1 axis regulates self-renewal of mouse embryonic stem cells in response to reactive oxygen species. Cellular signalling26: 1500-1505
CrossRef
Google scholar
|
[101] |
Yamagata K, Kitabayashi I (2009) Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX. Biochemical and biophysical research communications390: 1355-1360
CrossRef
Google scholar
|
[102] |
Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Ronty M
CrossRef
Google scholar
|
[103] |
Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T, Go S, Tasaki M, Uchimura K, Kadomatsu T
CrossRef
Google scholar
|
[104] |
Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX, Zeng Q, Chen L, Nan X, He LJ, Li ST
CrossRef
Google scholar
|
[105] |
Yuan H, Su L, Chen WY (2013) The emerging and diverse roles of sirtuins in cancer: a clinical perspective. OncoTargets and therapy6: 1399
|
[106] |
Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T
CrossRef
Google scholar
|
[107] |
Zhu H, Zhao L, Wang E, Dimova N, Liu G, Feng Y, Cambi F (2012) The QKI-PLP pathway controls SIRT2 abundance in CNS myelin. Glia60: 69-82
CrossRef
Google scholar
|
[108] |
Zhu Y, Yan Y, Principe DR, Zou X, Vassilopoulos A, Gius D (2014) SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer & Metabolism2: 1-11
CrossRef
Google scholar
|
/
〈 | 〉 |