MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1

Mingxu Song , Yuan Yin , Jiwei Zhang , Binbin Zhang , Zehua Bian , Chao Quan , Leyuan Zhou , Yaling Hu , Qifeng Wang , Shujuan Ni , Bojian Fei , Weili Wang , Xiang Du , Dong Hua , Zhaohui Huang

Protein Cell ›› 2014, Vol. 5 ›› Issue (11) : 851 -861.

PDF (1727KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (11) : 851 -861. DOI: 10.1007/s13238-014-0093-5
RESEARCH ARTICLE
RESEARCH ARTICLE

MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1

Author information +
History +
PDF (1727KB)

Abstract

MicroRNAs (miRNAs) that exert function by posttranscriptional suppression have recently brought insight in our understanding of the role of non-protein-coding RNAs in carcinogenesis and metastasis. In this study, we described the function and molecular mechanism of miR-139-5p in colorectal cancer (CRC) and its potential clinical application in CRC. We found that miR-139-5p was significantly downregulated in 73.8% CRC samples compared with adjacent noncancerous tissues (NCTs), and decreased miR-139-5p was associated with poor prognosis. Functional analyses demonstrated that ectopic expression of miR-139-5p suppressed CRC cell migration and invasion in vitro and metastasis in vivo. Mechanistic investigations revealed that miR-139-5p suppress CRC cell invasion and metastasis by targeting AMFR and NOTCH1. Knockdown of the two genes phenocopied the inhibitory effect of miR-139-5p on CRC metastasis. Furthermore, the protein levels of the two genes were upregulated in CRC samples compared with NCTs, and inversely correlated with the miR-139-5p expression. Increased NOTCH1 protein expression was correlated with poor prognosis of CRC patients. Together, our data indicate that miR-139-5p is a potential tumor suppressor and prognostic factor for CRC, and targeting miR-139-5p may repress the metastasis of CRC and improve survival.

Keywords

miR-139-5p / AMFR / NOTCH1 / colorectal cancer / metastasis / prognosis

Cite this article

Download citation ▾
Mingxu Song, Yuan Yin, Jiwei Zhang, Binbin Zhang, Zehua Bian, Chao Quan, Leyuan Zhou, Yaling Hu, Qifeng Wang, Shujuan Ni, Bojian Fei, Weili Wang, Xiang Du, Dong Hua, Zhaohui Huang. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell, 2014, 5(11): 851-861 DOI:10.1007/s13238-014-0093-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128-2136

[2]

Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, Zhao J, Meng YL, Ren XL, Wang T (2011) HER2 interacts with CD44 to upregulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology141(2076-2087): e2076

[3]

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116: 281-297

[4]

Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM (2014) Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta1845(2): 255-265

[5]

Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N (2013) A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 12: 602-615

[6]

Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene28: 1385-1392

[7]

Chiu CG, St-Pierre P, Nabi IR, Wiseman SM (2008) Autocrine motility factor receptor: a clinical review. Expert Rev Anticancer Ther8: 207-217

[8]

Chu D, Li Y, Wang W, Zhao Q, Li J, Lu Y, Li M, Dong G, Zhang H, Xie H (2010) High level of Notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol17: 1337-1342

[9]

Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer6: 259-269

[10]

Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM (2001) The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA98: 14422-14427

[11]

Gu W, Li X, Wang J (2013) miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep31(1): 397-404

[12]

Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol24: 652-657

[13]

Guo H, Hu X, Ge S, Qian G, Zhang J (2012) Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol44: 1465-1472

[14]

Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445: 776-780

[15]

Hristova NR, Tagscherer KE, Fassl A, Kopitz J, Roth W (2013) Notch1-dependent regulation of p27 determines cell fate in colorectal cancer. Int J Oncol43: 1967-1975

[16]

Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol727: 186-198

[17]

Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X, Du X (2011) MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res71: 2582-2589

[18]

Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res69: 7495-7498

[19]

Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW (2014) MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol16: 268-280

[20]

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin61: 69-90

[21]

Jiang WG, Raz A, Douglas-Jones A, Mansel RE (2006) Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem54: 231-241

[22]

Kanbe K, Chigira M, Watanabe H (1994) Effects of protein kinase inhibitors on the cell motility stimulated by autocrine motility factor. Biochim Biophys Acta1222: 395-399

[23]

Kawanishi K, Doki Y, Shiozaki H, Yano M, Inoue M, Fukuchi N, Utsunomiya T, Watanabe H, Monden M (2000) Correlation between loss of E-cadherin expression and overexpression of autocrine motility factor receptor in association with progression of human gastric cancers. Am J Clin Pathol113: 266-274

[24]

Kho DH, Nangia-Makker P, Balan V, Hogan V, Tait L, Wang Y, Raz A (2013) Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells. Cancer Res73: 1411-1419

[25]

Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A (2013) miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA19: 1767-1780

[26]

Li Y, VandenBoom TG2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69: 6704-6712

[27]

Li RY, Chen LC, Zhang HY, Du WZ, Feng Y, Wang HB, Wen JQ, Liu X, Li XF, Sun Y (2013) MiR-139 inhibits Mcl-1 expression and potentiates TMZ-induced apoptosis in glioma. CNS Neurosci Ther19: 477-483

[28]

Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, Yin L, Kim SJ (2013) Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One8: e77068

[29]

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods25: 402-408

[30]

Manikandan J, Aarthi JJ, Kumar SD, Pushparaj PN (2008) Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation2: 330-334

[31]

Miele L, Golde T, Osborne B (2006) Notch signaling in cancer. Curr Mol Med6: 905-918

[32]

Mo YY, Tang H, Miele L (2013) Notch-associated microRNAs in cancer. Curr Drug Targets14: 1157-1166

[33]

Nakamori S, Watanabe H, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, Kabuto T, Raz A (1994) Expression of autocrine motility factor receptor in colorectal cancer as a predictor for disease recurrence. Cancer74: 1855-1862

[34]

Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer9: 293-302

[35]

Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol33: 1223-1229

[36]

Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, Lu Y, Li Q, Liu J (2012) MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol84: 320-330

[37]

Skrtic A, Korac P, Kristo DR, Ajdukovic Stojisavljevic R, Ivankovic D, Dominis M (2010) Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance. Hum Pathol41: 1702-1710

[38]

Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, Anant S, Ramanujam RP, Houchen CW (2011) Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnol9: 40

[39]

Taniguchi K, Yonemura Y, Nojima N, Hirono Y, Fushida S, Fujimura T, Miwa K, Endo Y, Yamamoto H, Watanabe H (1998) The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer82: 2112-2122

[40]

Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med13: 1504-1509

[41]

Wang L, Hou G, Xue L, Li J, Wei P, Xu P (2010) Autocrine motility factor receptor signaling pathway promotes cell invasion via activation of ROCK-2 in esophageal squamous cell cancer cells. Cancer Invest28: 993-1003

[42]

Wang Q, Huang Z, Guo W, Ni S, Xiao X, Wang L, Huang D, Tan C, Xu Q, Zha R (2014) MicroRNA-202-3p Inhibits Cell Proliferation by Targeting ADP-Ribosylation Factor-like 5A in Human Colorectal Carcinoma. Clin Cancer Res20: 1146-1157

[43]

Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K, Ng IO (2011) The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rhokinase 2. Gastroenterology140: 322-331

[44]

Yanagawa T, Funasaka T, Tsutsumi S, Watanabe H, Raz A (2004) Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocr Relat Cancer11: 749-759

[45]

Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, Wang K, Zheng S, Ng SS, Chan FK (2014) microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer13: 124

RIGHTS & PERMISSIONS

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

AI Summary AI Mindmap
PDF (1727KB)

Supplementary files

PAC-0851-14111-HZH_suppl_01

PAC-0851-14111-HZH_suppl_02

1102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/