MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1

Mingxu Song, Yuan Yin, Jiwei Zhang, Binbin Zhang, Zehua Bian, Chao Quan, Leyuan Zhou, Yaling Hu, Qifeng Wang, Shujuan Ni, Bojian Fei, Weili Wang, Xiang Du, Dong Hua, Zhaohui Huang

PDF(1727 KB)
PDF(1727 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (11) : 851-861. DOI: 10.1007/s13238-014-0093-5
RESEARCH ARTICLE
RESEARCH ARTICLE

MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1

Author information +
History +

Abstract

MicroRNAs (miRNAs) that exert function by posttranscriptional suppression have recently brought insight in our understanding of the role of non-protein-coding RNAs in carcinogenesis and metastasis. In this study, we described the function and molecular mechanism of miR-139-5p in colorectal cancer (CRC) and its potential clinical application in CRC. We found that miR-139-5p was significantly downregulated in 73.8% CRC samples compared with adjacent noncancerous tissues (NCTs), and decreased miR-139-5p was associated with poor prognosis. Functional analyses demonstrated that ectopic expression of miR-139-5p suppressed CRC cell migration and invasion in vitro and metastasis in vivo. Mechanistic investigations revealed that miR-139-5p suppress CRC cell invasion and metastasis by targeting AMFR and NOTCH1. Knockdown of the two genes phenocopied the inhibitory effect of miR-139-5p on CRC metastasis. Furthermore, the protein levels of the two genes were upregulated in CRC samples compared with NCTs, and inversely correlated with the miR-139-5p expression. Increased NOTCH1 protein expression was correlated with poor prognosis of CRC patients. Together, our data indicate that miR-139-5p is a potential tumor suppressor and prognostic factor for CRC, and targeting miR-139-5p may repress the metastasis of CRC and improve survival.

Keywords

miR-139-5p / AMFR / NOTCH1 / colorectal cancer / metastasis / prognosis

Cite this article

Download citation ▾
Mingxu Song, Yuan Yin, Jiwei Zhang, Binbin Zhang, Zehua Bian, Chao Quan, Leyuan Zhou, Yaling Hu, Qifeng Wang, Shujuan Ni, Bojian Fei, Weili Wang, Xiang Du, Dong Hua, Zhaohui Huang. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell, 2014, 5(11): 851‒861 https://doi.org/10.1007/s13238-014-0093-5

References

[1]
Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128-2136
CrossRef Google scholar
[2]
Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, Zhao J, Meng YL, Ren XL, Wang T (2011) HER2 interacts with CD44 to upregulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology141(2076-2087): e2076
[3]
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116: 281-297
CrossRef Google scholar
[4]
Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM (2014) Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta1845(2): 255-265
[5]
Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N (2013) A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 12: 602-615
CrossRef Google scholar
[6]
Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene28: 1385-1392
CrossRef Google scholar
[7]
Chiu CG, St-Pierre P, Nabi IR, Wiseman SM (2008) Autocrine motility factor receptor: a clinical review. Expert Rev Anticancer Ther8: 207-217
CrossRef Google scholar
[8]
Chu D, Li Y, Wang W, Zhao Q, Li J, Lu Y, Li M, Dong G, Zhang H, Xie H (2010) High level of Notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol17: 1337-1342
CrossRef Google scholar
[9]
Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer6: 259-269
CrossRef Google scholar
[10]
Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM (2001) The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA98: 14422-14427
CrossRef Google scholar
[11]
Gu W, Li X, Wang J (2013) miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep31(1): 397-404
[12]
Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol24: 652-657
CrossRef Google scholar
[13]
Guo H, Hu X, Ge S, Qian G, Zhang J (2012) Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol44: 1465-1472
CrossRef Google scholar
[14]
Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445: 776-780
CrossRef Google scholar
[15]
Hristova NR, Tagscherer KE, Fassl A, Kopitz J, Roth W (2013) Notch1-dependent regulation of p27 determines cell fate in colorectal cancer. Int J Oncol43: 1967-1975
[16]
Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol727: 186-198
CrossRef Google scholar
[17]
Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X, Du X (2011) MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res71: 2582-2589
CrossRef Google scholar
[18]
Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res69: 7495-7498
CrossRef Google scholar
[19]
Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW (2014) MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol16: 268-280
CrossRef Google scholar
[20]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin61: 69-90
CrossRef Google scholar
[21]
Jiang WG, Raz A, Douglas-Jones A, Mansel RE (2006) Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem54: 231-241
CrossRef Google scholar
[22]
Kanbe K, Chigira M, Watanabe H (1994) Effects of protein kinase inhibitors on the cell motility stimulated by autocrine motility factor. Biochim Biophys Acta1222: 395-399
CrossRef Google scholar
[23]
Kawanishi K, Doki Y, Shiozaki H, Yano M, Inoue M, Fukuchi N, Utsunomiya T, Watanabe H, Monden M (2000) Correlation between loss of E-cadherin expression and overexpression of autocrine motility factor receptor in association with progression of human gastric cancers. Am J Clin Pathol113: 266-274
CrossRef Google scholar
[24]
Kho DH, Nangia-Makker P, Balan V, Hogan V, Tait L, Wang Y, Raz A (2013) Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells. Cancer Res73: 1411-1419
CrossRef Google scholar
[25]
Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A (2013) miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA19: 1767-1780
CrossRef Google scholar
[26]
Li Y, VandenBoom TG2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69: 6704-6712
CrossRef Google scholar
[27]
Li RY, Chen LC, Zhang HY, Du WZ, Feng Y, Wang HB, Wen JQ, Liu X, Li XF, Sun Y (2013) MiR-139 inhibits Mcl-1 expression and potentiates TMZ-induced apoptosis in glioma. CNS Neurosci Ther19: 477-483
CrossRef Google scholar
[28]
Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, Yin L, Kim SJ (2013) Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One8: e77068
CrossRef Google scholar
[29]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods25: 402-408
CrossRef Google scholar
[30]
Manikandan J, Aarthi JJ, Kumar SD, Pushparaj PN (2008) Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation2: 330-334
CrossRef Google scholar
[31]
Miele L, Golde T, Osborne B (2006) Notch signaling in cancer. Curr Mol Med6: 905-918
CrossRef Google scholar
[32]
Mo YY, Tang H, Miele L (2013) Notch-associated microRNAs in cancer. Curr Drug Targets14: 1157-1166
CrossRef Google scholar
[33]
Nakamori S, Watanabe H, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, Kabuto T, Raz A (1994) Expression of autocrine motility factor receptor in colorectal cancer as a predictor for disease recurrence. Cancer74: 1855-1862
CrossRef Google scholar
[34]
Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer9: 293-302
CrossRef Google scholar
[35]
Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol33: 1223-1229
[36]
Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, Lu Y, Li Q, Liu J (2012) MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol84: 320-330
CrossRef Google scholar
[37]
Skrtic A, Korac P, Kristo DR, Ajdukovic Stojisavljevic R, Ivankovic D, Dominis M (2010) Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance. Hum Pathol41: 1702-1710
CrossRef Google scholar
[38]
Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, Anant S, Ramanujam RP, Houchen CW (2011) Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnol9: 40
CrossRef Google scholar
[39]
Taniguchi K, Yonemura Y, Nojima N, Hirono Y, Fushida S, Fujimura T, Miwa K, Endo Y, Yamamoto H, Watanabe H (1998) The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer82: 2112-2122
CrossRef Google scholar
[40]
Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med13: 1504-1509
CrossRef Google scholar
[41]
Wang L, Hou G, Xue L, Li J, Wei P, Xu P (2010) Autocrine motility factor receptor signaling pathway promotes cell invasion via activation of ROCK-2 in esophageal squamous cell cancer cells. Cancer Invest28: 993-1003
CrossRef Google scholar
[42]
Wang Q, Huang Z, Guo W, Ni S, Xiao X, Wang L, Huang D, Tan C, Xu Q, Zha R (2014) MicroRNA-202-3p Inhibits Cell Proliferation by Targeting ADP-Ribosylation Factor-like 5A in Human Colorectal Carcinoma. Clin Cancer Res20: 1146-1157
CrossRef Google scholar
[43]
Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K, Ng IO (2011) The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rhokinase 2. Gastroenterology140: 322-331
CrossRef Google scholar
[44]
Yanagawa T, Funasaka T, Tsutsumi S, Watanabe H, Raz A (2004) Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocr Relat Cancer11: 749-759
CrossRef Google scholar
[45]
Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, Wang K, Zheng S, Ng SS, Chan FK (2014) microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer13: 124
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(1727 KB)

Accesses

Citations

Detail

Sections
Recommended

/