MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1
Mingxu Song, Yuan Yin, Jiwei Zhang, Binbin Zhang, Zehua Bian, Chao Quan, Leyuan Zhou, Yaling Hu, Qifeng Wang, Shujuan Ni, Bojian Fei, Weili Wang, Xiang Du, Dong Hua, Zhaohui Huang
MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1
MicroRNAs (miRNAs) that exert function by posttranscriptional suppression have recently brought insight in our understanding of the role of non-protein-coding RNAs in carcinogenesis and metastasis. In this study, we described the function and molecular mechanism of miR-139-5p in colorectal cancer (CRC) and its potential clinical application in CRC. We found that miR-139-5p was significantly downregulated in 73.8% CRC samples compared with adjacent noncancerous tissues (NCTs), and decreased miR-139-5p was associated with poor prognosis. Functional analyses demonstrated that ectopic expression of miR-139-5p suppressed CRC cell migration and invasion in vitro and metastasis in vivo. Mechanistic investigations revealed that miR-139-5p suppress CRC cell invasion and metastasis by targeting AMFR and NOTCH1. Knockdown of the two genes phenocopied the inhibitory effect of miR-139-5p on CRC metastasis. Furthermore, the protein levels of the two genes were upregulated in CRC samples compared with NCTs, and inversely correlated with the miR-139-5p expression. Increased NOTCH1 protein expression was correlated with poor prognosis of CRC patients. Together, our data indicate that miR-139-5p is a potential tumor suppressor and prognostic factor for CRC, and targeting miR-139-5p may repress the metastasis of CRC and improve survival.
miR-139-5p / AMFR / NOTCH1 / colorectal cancer / metastasis / prognosis
[1] |
Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128-2136
CrossRef
Google scholar
|
[2] |
Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, Zhao J, Meng YL, Ren XL, Wang T
|
[3] |
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116: 281-297
CrossRef
Google scholar
|
[4] |
Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM (2014) Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta1845(2): 255-265
|
[5] |
Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N
CrossRef
Google scholar
|
[6] |
Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y
CrossRef
Google scholar
|
[7] |
Chiu CG, St-Pierre P, Nabi IR, Wiseman SM (2008) Autocrine motility factor receptor: a clinical review. Expert Rev Anticancer Ther8: 207-217
CrossRef
Google scholar
|
[8] |
Chu D, Li Y, Wang W, Zhao Q, Li J, Lu Y, Li M, Dong G, Zhang H, Xie H
CrossRef
Google scholar
|
[9] |
Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer6: 259-269
CrossRef
Google scholar
|
[10] |
Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM (2001) The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA98: 14422-14427
CrossRef
Google scholar
|
[11] |
Gu W, Li X, Wang J (2013) miR-139 regulates the proliferation and invasion of hepatocellular carcinoma through the WNT/TCF-4 pathway. Oncol Rep31(1): 397-404
|
[12] |
Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol24: 652-657
CrossRef
Google scholar
|
[13] |
Guo H, Hu X, Ge S, Qian G, Zhang J (2012) Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol44: 1465-1472
CrossRef
Google scholar
|
[14] |
Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N
CrossRef
Google scholar
|
[15] |
Hristova NR, Tagscherer KE, Fassl A, Kopitz J, Roth W (2013) Notch1-dependent regulation of p27 determines cell fate in colorectal cancer. Int J Oncol43: 1967-1975
|
[16] |
Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol727: 186-198
CrossRef
Google scholar
|
[17] |
Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X, Du X (2011) MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res71: 2582-2589
CrossRef
Google scholar
|
[18] |
Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res69: 7495-7498
CrossRef
Google scholar
|
[19] |
Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW
CrossRef
Google scholar
|
[20] |
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin61: 69-90
CrossRef
Google scholar
|
[21] |
Jiang WG, Raz A, Douglas-Jones A, Mansel RE (2006) Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem54: 231-241
CrossRef
Google scholar
|
[22] |
Kanbe K, Chigira M, Watanabe H (1994) Effects of protein kinase inhibitors on the cell motility stimulated by autocrine motility factor. Biochim Biophys Acta1222: 395-399
CrossRef
Google scholar
|
[23] |
Kawanishi K, Doki Y, Shiozaki H, Yano M, Inoue M, Fukuchi N, Utsunomiya T, Watanabe H, Monden M (2000) Correlation between loss of E-cadherin expression and overexpression of autocrine motility factor receptor in association with progression of human gastric cancers. Am J Clin Pathol113: 266-274
CrossRef
Google scholar
|
[24] |
Kho DH, Nangia-Makker P, Balan V, Hogan V, Tait L, Wang Y, Raz A (2013) Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells. Cancer Res73: 1411-1419
CrossRef
Google scholar
|
[25] |
Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A
CrossRef
Google scholar
|
[26] |
Li Y, VandenBoom TG2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69: 6704-6712
CrossRef
Google scholar
|
[27] |
Li RY, Chen LC, Zhang HY, Du WZ, Feng Y, Wang HB, Wen JQ, Liu X, Li XF, Sun Y
CrossRef
Google scholar
|
[28] |
Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, Yin L, Kim SJ (2013) Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One8: e77068
CrossRef
Google scholar
|
[29] |
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods25: 402-408
CrossRef
Google scholar
|
[30] |
Manikandan J, Aarthi JJ, Kumar SD, Pushparaj PN (2008) Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation2: 330-334
CrossRef
Google scholar
|
[31] |
Miele L, Golde T, Osborne B (2006) Notch signaling in cancer. Curr Mol Med6: 905-918
CrossRef
Google scholar
|
[32] |
Mo YY, Tang H, Miele L (2013) Notch-associated microRNAs in cancer. Curr Drug Targets14: 1157-1166
CrossRef
Google scholar
|
[33] |
Nakamori S, Watanabe H, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, Kabuto T, Raz A (1994) Expression of autocrine motility factor receptor in colorectal cancer as a predictor for disease recurrence. Cancer74: 1855-1862
CrossRef
Google scholar
|
[34] |
Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer9: 293-302
CrossRef
Google scholar
|
[35] |
Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol33: 1223-1229
|
[36] |
Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, Lu Y, Li Q, Liu J (2012) MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol84: 320-330
CrossRef
Google scholar
|
[37] |
Skrtic A, Korac P, Kristo DR, Ajdukovic Stojisavljevic R, Ivankovic D, Dominis M (2010) Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance. Hum Pathol41: 1702-1710
CrossRef
Google scholar
|
[38] |
Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, Anant S, Ramanujam RP, Houchen CW (2011) Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnol9: 40
CrossRef
Google scholar
|
[39] |
Taniguchi K, Yonemura Y, Nojima N, Hirono Y, Fushida S, Fujimura T, Miwa K, Endo Y, Yamamoto H, Watanabe H (1998) The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer82: 2112-2122
CrossRef
Google scholar
|
[40] |
Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C
CrossRef
Google scholar
|
[41] |
Wang L, Hou G, Xue L, Li J, Wei P, Xu P (2010) Autocrine motility factor receptor signaling pathway promotes cell invasion via activation of ROCK-2 in esophageal squamous cell cancer cells. Cancer Invest28: 993-1003
CrossRef
Google scholar
|
[42] |
Wang Q, Huang Z, Guo W, Ni S, Xiao X, Wang L, Huang D, Tan C, Xu Q, Zha R
CrossRef
Google scholar
|
[43] |
Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K, Ng IO (2011) The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rhokinase 2. Gastroenterology140: 322-331
CrossRef
Google scholar
|
[44] |
Yanagawa T, Funasaka T, Tsutsumi S, Watanabe H, Raz A (2004) Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocr Relat Cancer11: 749-759
CrossRef
Google scholar
|
[45] |
Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, Wang K, Zheng S, Ng SS, Chan FK
CrossRef
Google scholar
|
/
〈 | 〉 |