Insights into battles between Mycobacterium tuberculosis and macrophages
Guanghua Xu, Jing Wang, George Fu Gao, Cui Hua Liu
Insights into battles between Mycobacterium tuberculosis and macrophages
As the first line of immune defense for Mycobacterium tuberculosis (Mtb), macrophages also provide a major habitat for Mtb to reside in the host for years. The battles between Mtb and macrophages have been constant since ancient times. Triggered upon Mtb infection, multiple cellular pathways in macrophages are activated to initiate a tailored immune response toward the invading pathogen and regulate the cellular fates of the host as well. Toll-like receptors (TLRs) expressed on macrophages can recognize pathogen-associated-molecular patterns (PAMPs) on Mtb and mediate the production of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons (IFNs). In addition, Vitamin D receptor (VDR) and Vitamin D-1-hydroxylase are up-regulated in Mtb-infected macrophages, by which Vitamin D participates in innate immune responses. The signaling pathways that involve TNF, typeI IFNs and Vitamin D are inter-connected, which play critical roles in the regulation of necroptosis, apoptosis, and autophagy of the infected macrophages. This review article summarizes current knowledge about the interactions between Mtb and macrophages, focusing on cellular fates of the Mtb-infected macrophages and the regulatory molecules and cellular pathways involved in those processes.
Mycobacterium tuberculosis / macrophages / necroptosis / apoptosis / autophagy / tumor necrosis factor (TNF) / type I Interferons (IFNs)
[1] |
Abdallah AM, Bestebroer J, Savage NDL, de Punder K, van Zon M, Wilson L, Korbee CJ, van der Sar AM, Ottenhoff THM, van der Wel NN
CrossRef
Google scholar
|
[2] |
Andersen P (1997) Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis. Scand J Immunol45: 115-131
CrossRef
Google scholar
|
[3] |
Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1998) Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol161: 2636-2641
|
[4] |
Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol8: 668-674
|
[5] |
Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan H, Divangahi M, Remold HG (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol4: 279-287
CrossRef
Google scholar
|
[6] |
Bhatt K, Salgame P (2007) Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol27: 347-362
CrossRef
Google scholar
|
[7] |
Bogdan C (2000) The function of type I interferons in antimicrobial immunity. Curr Opin Immunol12: 419-424
CrossRef
Google scholar
|
[8] |
Bordón J, Plankey MW, Young M, Greenblatt RM, Villacres MC, French AL, Zhang J, Brock G, Appana S, Herold B, Durkin H, Golub JE, Fernandez-Botran R (2011) Lower levels of interleukin-12 precede the development of tuberculosis among HIV-infected women. Cytokine56: 325-331
CrossRef
Google scholar
|
[9] |
Bouchonnet F, Boechat N, Bonay M, Hance AJ (2002) Alpha/beta interferon impairs the ability of human macrophages to control growth of Mycobacterium bovis BCG. Infect Immun70: 3020-3025
CrossRef
Google scholar
|
[10] |
Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M, Deretic V (2013) Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol16: 355-365
CrossRef
Google scholar
|
[11] |
Brune B (2003) Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ10: 864-869
CrossRef
Google scholar
|
[12] |
Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis8: 237-249
CrossRef
Google scholar
|
[13] |
Chen Q, Gong B, Mahmoud-Ahmed AS, Zhou A, Hsi ED, Hussein M, Almasan A (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood98: 2183-2192
CrossRef
Google scholar
|
[14] |
Desvignes L, Wolf AJ, Ernst JD (2012) Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol188: 6205-6215
CrossRef
Google scholar
|
[15] |
Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJM (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ20: 1381-1392
CrossRef
Google scholar
|
[16] |
Du QL, Xie JP, Kim HJ, Ma XJ (2013) Type I interferon: the mediator of bacterial infection-induced necroptosis. Cell Mol Immunol10: 4-6
CrossRef
Google scholar
|
[17] |
Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, Teles R, Montoya D, Iyer SS, Bruns H, Lewinsohn DM, Hollis BW, Hewison M, Hewison M, Adams JS, Steinmeyer A, Steinmeyer A, Zügel U, Cheng G, Jo EK, Bloom BR, Modlin RL (2011) Vitamin D is required for IFNgamma- mediated antimicrobial activity of human macrophages. Sci Transl Med3: 104ra102
|
[18] |
Flynn JL, Chan J (2001) Immunology of tuberculosis. Ann Rev Immunol19: 93-129
CrossRef
Google scholar
|
[19] |
Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell147: 742-758
CrossRef
Google scholar
|
[20] |
Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell135: 1161-1163
CrossRef
Google scholar
|
[21] |
Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol12: 125-135
|
[22] |
Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, Farlik M, Decker T, Du Pasquier RA, Romero P, Tschopp J (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity34: 213-223
CrossRef
Google scholar
|
[23] |
Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Semin Immunopathol35: 563-583
CrossRef
Google scholar
|
[24] |
Han JH, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol12: 1143-1149
CrossRef
Google scholar
|
[25] |
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410: 1099-1103
CrossRef
Google scholar
|
[26] |
Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC
CrossRef
Google scholar
|
[27] |
Jayachandran R, BoseDasgupta S, Pieters J (2013) Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Curr Top Microbiol Immunol374: 189-209
CrossRef
Google scholar
|
[28] |
Jayakumar D, Jacobs WR, Narayanan S (2008) Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell Microbiol10: 365-374
|
[29] |
Jayaraman P, Sada-Ovalle I, Nishimura T, Anderson AC, Kuchroo VK, Remold HG, Behar SM (2013) IL-1 beta promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation. J Immunol190: 4196-4204
CrossRef
Google scholar
|
[30] |
Jiang WW, Bell CW, Pisetsky DS (2007) The relationship between apoptosis and high-mobility group protein 1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinicpolycytidylic acid. J Immunol178: 6495-6503
CrossRef
Google scholar
|
[31] |
Keane J, Remold HG, Kornfeld H (2000) Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol164: 2016-2020
CrossRef
Google scholar
|
[32] |
Killick KE, Cheallaigh CN, O’Farrelly C, Hokamp K, MacHugh DE, Harris J (2013) Receptor-mediated recognition of mycobacterial pathogens. Cell Microbiol15: 1484-1495
CrossRef
Google scholar
|
[33] |
Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacteriumtuberculosis. Cell140: 731-743
CrossRef
Google scholar
|
[34] |
Kundu M, Pathak SK, Kumawat K, Basu S, Chatterjee G, Pathak S, Noguchi T, Takeda K, Ichijo H, Thien CBF
CrossRef
Google scholar
|
[35] |
Liang SJ, Qin XB (2013) Critical role of type I interferon-induced macrophage necroptosis during infection with Salmonella enterica serovar typhimurium. Cell Mol Immunol10: 99-100
CrossRef
Google scholar
|
[36] |
Liu PT, Stenger S, Li HY, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C
CrossRef
Google scholar
|
[37] |
Mata-Granados JM, Cuenca-Acebedo R, de Castro MDL, Gomez JMQ (2013) Lower vitamin E serum levels are associated with osteoporosis in early postmenopausal women: a cross-sectional study. J Bone Miner Metab31: 455-460
CrossRef
Google scholar
|
[38] |
Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. Plos Pathog6: e1000864
CrossRef
Google scholar
|
[39] |
Mouli VP, Ananthakrishnan AN (2014) Review article: vitamin D and inflammatory bowel diseases. Alimentary Pharmacol Ther39: 125-136
CrossRef
Google scholar
|
[40] |
Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, Myers TG, Rabin RL, Trinchieri G, Sher A
CrossRef
Google scholar
|
[41] |
Nursyam EW, Amin Z, Rumende CM (2006) The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones38: 3-5
|
[42] |
Prabhakar S, Qiao YM, Hoshino Y, Weiden M, Canova A, Giacomini E, Coccia E, Pine R (2003) Inhibition of response to alpha interferon by Mycobacterium tuberculosis. Infect Immun71: 2487-2497
CrossRef
Google scholar
|
[43] |
Rakotosamimanana N, Doherty TM, Andriamihantasoa LH, Richard V, Gicquel B, Soares JL, Zumla A, Razanamparany VR (2013) Expression of TNF-alpha-dependent apoptosis-related genes in the peripheral blood of malagasy subjects with tuberculosis. Plos One8: 61154
CrossRef
Google scholar
|
[44] |
Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y, Roelandt R, Bruggeman I, Goncalves A, Bertrand MJM, Baekelandt V, Takahashi N, Berghe TV, Vandenabeele P (2014) Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis5: e1004
CrossRef
Google scholar
|
[45] |
Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, Torres M, Sada E (2008) Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun76: 935-941
CrossRef
Google scholar
|
[46] |
Roca FJ, Ramakrishnan L (2013) TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell153: 521-534
CrossRef
Google scholar
|
[47] |
Rockett KA, Brookes R, Udalova I, Vidal V, Hill AVS, Kwiatkowski D (1998) 1,25-dihydroxyvitamin D-3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun66: 5314-5321
|
[48] |
Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo SQ, Underwood BR
CrossRef
Google scholar
|
[49] |
Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SHE (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med9: 1039-1046
CrossRef
Google scholar
|
[50] |
Shin DM, Yuk JM, Lee HM, Lee SH, Son JW, Harding CV, Kim JM, Modlin RL, Jo EK (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol12: 1648-1665
CrossRef
Google scholar
|
[51] |
Simmons DP, Canaday DH, Liu Y, Li Q, Huang A, Boom WH, Harding CV (2010) Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. J Immunol185: 2405-2415
CrossRef
Google scholar
|
[52] |
Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR (2003) Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol170: 430-437
CrossRef
Google scholar
|
[53] |
Songane M, Kleinnijenhuis J, Netea MG, van Crevel R (2012) The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis92: 388-396
CrossRef
Google scholar
|
[54] |
Underhill DM, Ozinsky A, Smith KD, Aderem A (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory<?Pub Caret?> signaling in macrophages. Proc Natl Acad Sci USA96: 14459-14463
CrossRef
Google scholar
|
[55] |
van Heijst JWJ, Pamer EG (2013) Radical host-specific therapies for TB. Cell153: 507-508
CrossRef
Google scholar
|
[56] |
van Zoelen MA, Yang H, Florquin S, Meijers JC, Akira S, Arnold B, Nawroth PP, Bierhaus A, Tracey KJ, van der Poll T (2009) Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock31: 280-284
CrossRef
Google scholar
|
[57] |
Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal3: re4
CrossRef
Google scholar
|
[58] |
Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR, Porcelli SA, Briken V (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. Plos Pathog3: 972-980
CrossRef
Google scholar
|
[59] |
Verway M, Bouttier M, Wang TT, Carrier M, Calderon M, An BS, Devemy E, McIntosh F, Divangahi M, Behr MA
CrossRef
Google scholar
|
[60] |
Veyrier F, Pletzer D, Turenne C, Behr MA (2009) Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol9: 196
CrossRef
Google scholar
|
[61] |
Wang ZG, Jiang H, Chen S, Du FH, Wang XD (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell148: 228-243
CrossRef
Google scholar
|
[62] |
Warner DF, Mizrahi V (2013) Complex genetics of drug resistance in Mycobacterium tuberculosis. Nat Genet45: 1107-1108
CrossRef
Google scholar
|
[63] |
WHO (2013) Global tuberculosis report 2013
|
[64] |
Wu SP, Sun J (2011) Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov Med59: 325-335
|
[65] |
Wu ZK, Wang Y, Chen LN (2013) Network-based drug repositioning. Mol Biosyst9: 1268-1281
CrossRef
Google scholar
|
[66] |
Yu XW, Li CM, Hong WL, Pan WH, Xie JP (2013) Autophagy during Mycobacterium tuberculosis infection and implications for future tuberculosis medications. Cell Signal25: 1272-1278
CrossRef
Google scholar
|
[67] |
Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe6: 231-243
CrossRef
Google scholar
|
[68] |
Zhang Y, Leung DY, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E (2012) Vitamin Dinhibits monocyte/macrophage proinflammatory cytokine production by targeting mitogen-activated protein kinase phosphatase-1. J Allergy Clin Immunol129: Ab146
CrossRef
Google scholar
|
/
〈 | 〉 |