Applications of RNA interference high-throughput screening technology in cancer biology and virology
Shan Gao, Chen Yang, Shan Jiang, Xiao-Ning Xu, Xin Lu, You-Wen He, Annie Cheung, Hui Wang
Applications of RNA interference high-throughput screening technology in cancer biology and virology
RNA interference (RNAi) is an ancient intra-cellular mechanism that regulates gene expression and cell function. Large-scale gene silencing using RNAi high-throughput screening (HTS) has opened an exciting frontier to systematically study gene function in mammalian cells. This approach enables researchers to identify gene function in a given biological context and will provide considerable novel insight. Here, we review RNAi HTS strategies and applications using case studies in cancer biology and virology.
RNA interference (RNAi) / short interfering RNA (siRNA) / short hairpin RNA (shRNA) / high-throughput screening / cancer / virology
[1] |
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF
CrossRef
Google scholar
|
[2] |
Almeida R, Allshire RC (2005) RNA silencing and genome regulation. Trends Cell Biol15: 251-258
CrossRef
Google scholar
|
[3] |
Ashworth A, Lord CJ, Reis-Filho JS (2011) Genetic interactions in cancer progression and treatment. Cell145: 30-38
CrossRef
Google scholar
|
[4] |
Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou LH
CrossRef
Google scholar
|
[5] |
Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C
CrossRef
Google scholar
|
[6] |
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N
CrossRef
Google scholar
|
[7] |
Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C
CrossRef
Google scholar
|
[8] |
Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409: 363-366
CrossRef
Google scholar
|
[9] |
Beronja S, Janki P, Heller E, Lien WH, Keyes BE, Oshimori N, Fuchs E (2013) RNAi screens in mice identify physiological regulators of oncogenic growth. Nature501(7466): 185-190
CrossRef
Google scholar
|
[10] |
Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet9: 554-566
CrossRef
Google scholar
|
[11] |
Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science319: 921-926
CrossRef
Google scholar
|
[12] |
Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E
CrossRef
Google scholar
|
[13] |
Cherry S, Doukas T, Armknecht S, Whelan S, Wang H, Sarnow P, Perrimon N (2005) Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev19: 445-452
CrossRef
Google scholar
|
[14] |
Cipriano R, Graham J, Miskimen KL, Bryson BL, Bruntz RC, Scott SA, Brown HA, Stark GR, Jackson MW (2012) FAM83B mediates EGFR- and RAS-driven oncogenic transformation. J Clin Invest122: 3197-3210
CrossRef
Google scholar
|
[15] |
Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM, Greninger P, Brown RD, Godfrey JT, Cohoon TJ
CrossRef
Google scholar
|
[16] |
Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells: a user’s guide. Nat Rev Genet7: 373-384
CrossRef
Google scholar
|
[17] |
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411: 494-498
CrossRef
Google scholar
|
[18] |
Fellmann C, Lowe SW (2014) Stable RNA interference rules for silencing. Nat Cell Biol16: 10-18
CrossRef
Google scholar
|
[19] |
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature391: 806-811
CrossRef
Google scholar
|
[20] |
Friedel CC, Haas J (2011) Virus-host interactomes and global models of virus-infected cells. Trends Microbiol19: 501-508
CrossRef
Google scholar
|
[21] |
Gao S, Giansanti MG, Buttrick GJ, Ramasubramanyan S, Auton A, Gatti M, Wakefield JG (2008) Australin: a chromosomal passenger protein required specifically for Drosophila melanogaster male meiosis. J Cell Biol180: 521-535
CrossRef
Google scholar
|
[22] |
Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, de Jong S, Tavakoli I, Judge A
CrossRef
Google scholar
|
[23] |
Girard MP, Cherian T, Pervikov Y, Kieny MP (2005) A review of vaccine research and development: human acute respiratory infections. Vaccine23: 5708-5724
CrossRef
Google scholar
|
[24] |
Guo X, Wang XF (2012) A mediator lost in the war on cancer. Cell151: 927-929
CrossRef
Google scholar
|
[25] |
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell144: 646-674
CrossRef
Google scholar
|
[26] |
Hannon GJ (2002) RNA interference. Nature418: 244-251
CrossRef
Google scholar
|
[27] |
Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P, Kawaoka Y (2008) Drosophila RNAiscreen identifies host genes important for influenza virus replication. Nature454: 890-893
CrossRef
Google scholar
|
[28] |
He L, Guo L, Vathipadiekal V, Sergent PA, Growdon WB, Engler DA, Rueda BR, Birrer MJ, Orsulic S, Mohapatra G (2013) Identification of LMX1B as a novel oncogene in human ovarian cancer. Oncogene1-10.
CrossRef
Pubmed
Google scholar
|
[29] |
Hock J, Meister G (2008) The Argonaute protein family. Genome Biol9: 210
CrossRef
Google scholar
|
[30] |
Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z
CrossRef
Google scholar
|
[31] |
Huang S, Holzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A
CrossRef
Google scholar
|
[32] |
Huang L, Jin J, Deighan P, Kiner E, McReynolds L, Lieberman J (2013) Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol31: 350-356
CrossRef
Google scholar
|
[33] |
Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D
CrossRef
Google scholar
|
[34] |
Hussain M, Asgari S (2014) MicroRNA-like viral small RNA from dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci USA111: 2746-2751
CrossRef
Google scholar
|
[35] |
Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov6: 556-568
CrossRef
Google scholar
|
[36] |
Jiang L, Siu MK, Wong OG, Tam KF, Lu X, Lam EW, Ngan HY, Le XF, Wong ES, Monteiro LJ
CrossRef
Google scholar
|
[37] |
Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S
CrossRef
Google scholar
|
[38] |
Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet8: 173-184
CrossRef
Google scholar
|
[39] |
Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, Fischer S, Konstantinova I, Habermann B, Grabner H
CrossRef
Google scholar
|
[40] |
Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE
CrossRef
Google scholar
|
[41] |
Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y
CrossRef
Google scholar
|
[42] |
Krausz E (2007) High-content siRNA screening. Mol Biosyst3: 232-240
CrossRef
Google scholar
|
[43] |
Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E
CrossRef
Google scholar
|
[44] |
Lambert LC, Fauci AS (2010) Influenza vaccines for the future. N Engl J Med363: 2036-2044
CrossRef
Google scholar
|
[45] |
Lander ES, Consortium IHGS, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M
CrossRef
Google scholar
|
[46] |
Lawson ND, Wolfe SA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 21: 48-64
CrossRef
Google scholar
|
[47] |
Liu YP, Vink MA, Westerink JT, Ramirez de Arellano E, Konstantinova P, Ter Brake O, Berkhout B (2010) Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA16: 1328-1339
CrossRef
Google scholar
|
[48] |
Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell137: 835-848
CrossRef
Google scholar
|
[49] |
Madan V, Paul D, Lohmann V, Bartenschlager R (2014) Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation. Gastroenterology146(5): 1361-72.e1-1361-72.e9
|
[50] |
Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell110: 563-574
CrossRef
Google scholar
|
[51] |
Mbeunkui F, Johann DJ (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63: 571-582
CrossRef
Google scholar
|
[52] |
Mercer J, Snijder B, Sacher R, Burkard C, Bleck CK, Stahlberg H, Pelkmans L, Helenius A (2012) RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. Cell Rep2: 1036-1047
CrossRef
Google scholar
|
[53] |
Moffat J, Sabatini DM (2006) Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol7: 177-187
CrossRef
Google scholar
|
[54] |
Ng TI, Mo H, Pilot-Matias T, He Y, Koev G, Krishnan P, Mondal R, Pithawalla R, He W, Dekhtyar T
CrossRef
Google scholar
|
[55] |
Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis12: 36-44
CrossRef
Google scholar
|
[56] |
Pattle SB, Farrell PJ (2006) The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther6: 1193-1205
CrossRef
Google scholar
|
[57] |
Petrocca F, Altschuler G, Tan SM, Mendillo ML, Yan HH, Jerry DJ, Kung AL, Hide W, Ince TA, Lieberman J (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basallike triple-negative breast cancer cells. Cancer Cell24: 182-196
CrossRef
Google scholar
|
[58] |
Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, Karpilow J, Marshall WS, Khvorova A (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA12: 988-993
CrossRef
Google scholar
|
[59] |
Rositch AF, Soeters HM, Offutt-Powell TN, Wheeler BS, Taylor SM, Smith JS (2014) The incidence of human papillomavirus infection following treatment for cervical neoplasia: a systematic review. Gynecol Oncol132(3): 767-779
CrossRef
Google scholar
|
[60] |
Sharma S, Rao A (2009) RNAi screening: tips and techniques. Nat Immunol10: 799-804
CrossRef
Google scholar
|
[61] |
Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ, Chang K (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science319: 617-620
CrossRef
Google scholar
|
[62] |
Sims D, Mendes-Pereira AM, Frankum J, Burgess D, Cerone MA, Lombardelli C, Mitsopoulos C, Hakas J, Murugaesu N, Isacke CM
CrossRef
Google scholar
|
[63] |
Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, Haber DA, Settleman J (2012) TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell148: 639-650
CrossRef
Google scholar
|
[64] |
Siu MK, Chan HY, Kong DS, Wong ES, Wong OG, Ngan HY, Tam KF, Zhang H, Li Z, Chan QK
CrossRef
Google scholar
|
[65] |
Siu MK, Wong ES, Kong DS, Chan HY, Jiang L, Wong OG, Lam EW, Chan KK, Ngan HY, Le XF
CrossRef
Google scholar
|
[66] |
Sivan G, Martin SE, Myers TG, Buehler E, Szymczyk KH, Ormanoglu P, Moss B (2013) Human genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. Proc Natl Acad Sci USA110: 3519-3524
CrossRef
Google scholar
|
[67] |
Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN, Ashworth A (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J27: 1368-1377
CrossRef
Google scholar
|
[68] |
Wang S, Huang X, Li Y, Lao H, Zhang Y, Dong H, Xu W, Li JL, Li M (2011) RN181 suppresses hepatocellular carcinoma growth by inhibition of the ERK/MAPK pathway. Hepatology53: 1932-1942
CrossRef
Google scholar
|
[69] |
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P
CrossRef
Google scholar
|
[70] |
Yang D, Buchholz F, Huang ZD, Goga A, Chen CY, Brodsky FM, Bishop JM (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA99: 9942-9947
CrossRef
Google scholar
|
[71] |
Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ
CrossRef
Google scholar
|
[72] |
Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ
CrossRef
Google scholar
|
/
〈 | 〉 |