Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division

Zhongyu Shi , Chunling Xuan , Huiming Han , Xia Cheng , Jundong Wang , Youjun Feng , Swaminath Srinivas , Guangwen Lu , George F. Gao

Protein Cell ›› 2014, Vol. 5 ›› Issue (10) : 761 -769.

PDF (683KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (10) : 761 -769. DOI: 10.1007/s13238-014-0074-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division

Author information +
History +
PDF (683KB)

Abstract

Bacterial cell division is strictly regulated in the formation of equal daughter cells. This process is governed by a series of spatial and temporal regulators, and several new factors of interest to the field have recently been identified. Here, we report the requirement of gluconate 5-dehydrogenase (Ga5DH) in cell division of the zoonotic pathogen Streptococcus suis. Ga5DH catalyzes the reversible reduction of 5-ketogluconate to D-gluconate and was localized to the site of cell division. The deletion of Ga5DH in S. suis resulted in a plump morphology with aberrant septa joining the progeny. A significant increase was also observed in cell length. These defects were determined to be the consequence of Ga5DH deprivation in S. suis causing FtsZ delocalization. In addition, the interaction of FtsZ with Ga5DH in vitro was confirmed by protein interaction assays. These results indicate that Ga5DH may function to prevent the formation of ectopic Z rings during S. suis cell division.

Keywords

Streptococcus suis / Ga5DH / cell shape / cell division / FtsZ localization

Cite this article

Download citation ▾
Zhongyu Shi, Chunling Xuan, Huiming Han, Xia Cheng, Jundong Wang, Youjun Feng, Swaminath Srinivas, Guangwen Lu, George F. Gao. Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division. Protein Cell, 2014, 5(10): 761-769 DOI:10.1007/s13238-014-0074-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Addinall SG, Lutkenhaus J (1996) FtsZ-spirals and-arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol22: 231-237

[2]

Albarracin Orio AG, Pinas GE, Cortes PR, Cian MB, Echenique J (2011) Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae. PLoS Pathog7: e1002000

[3]

Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature354: 161-164

[4]

Dziedzic R, Kiran M, Plocinski P, Ziolkiewicz M, Brzostek A, Moomey M, Vadrevu IS, Dziadek J, Madiraju M, Rajagopalan M (2010) Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PloS One5: e11058

[5]

Elbaz M, Ben-Yehuda S (2010) The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology. PLoS Genet6: e1001119

[6]

Feng Y, Zheng F, Pan X, Sun W, Wang C, Dong Y, Ju A, Ge J, Liu D, Liu C (2007) Existence and characterization of allelic variants of Sao, a newly identified surface protein from Streptococcus suis. FEMS Microbiol Lett275: 80-88

[7]

Feng Y, Li M, Zhang H, Zheng B, Han H, Wang C, Yan J, Tang J, Gao GF (2008) Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol190: 7567-7578

[8]

Feng Y, Shi X, Zhang H, Zhang S, Ma Y, Zheng B, Han H, Lan Q, Tang J, Cheng J (2009) Recurrence of human Streptococcus suis infections in 2007: three cases of meningitis and implications that heterogeneous S. suis 2 circulates in China. Zoonoses Public Health56: 506-514

[9]

Feng Y, Zhang H, Ma Y, Gao GF (2010) Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol18: 124-131

[10]

Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi AM, Grangeasse C (2012) Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae.Mol Microbiol83: 746-758

[11]

Foulquier E, Pompeo F, Bernadac A, Espinosa L, Galinier A (2011) The YvcK protein is required for morphogenesis via localization of PBP1 under gluconeogenic growth conditions in Bacillus subtilis. Mol Microbiol80: 309-318

[12]

Kay R, Cheng AF, Tse CY (1995) Streptococcus suis infection in Hong Kong. QJM88: 39-47

[13]

Li M, Wang C, Feng Y, Pan X, Cheng G, Wang J, Ge J, Zheng F, Cao M, Dong Y (2008) SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS One3: e2080

[14]

Li M, Shen X, Yan J, Han H, Zheng B, Liu D, Cheng H, Zhao Y, Rao X, Wang C (2011) GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol79: 1670-1683

[15]

Lu Q, Lu H, Qi J, Lu G, Gao GF (2012) An octamer of enolase from Streptococcus suis. Protein Cell3: 769-780

[16]

Macrina FL, Tobian JA, Jones KR, Evans RP, Clewell DB (1982) A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene19: 345-353

[17]

Mazokopakis EE, Kofteridis DP, Papadakis JA, Gikas AH, Samonis GJ (2005) First case report of Streptococcus suis septicaemia and meningitis from Greece. Eur J Neurol12: 487-489

[18]

Nghia HD, Hoa NT, le Linh D, Campbell J, Diep TS, Chau NV, Mai NT, Hien TT, Spratt B, Farrar J (2008) Human case of Streptococcus suis serotype 16 infection. Emerg Infect Dis14: 155-157

[19]

Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J21: 685-693

[20]

Sweeney NJ, Laux DC, Cohen PS (1996) Escherichia coli F-18 and E. coli K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect Immun64: 3504-3511

[21]

Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H (2006) Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med3: e151

[22]

Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA (2007) A metabolic sensor governing cell size in bacteria. Cell130: 335-347

[23]

Zapun A, Vernet T, Pinho MG (2008) The different shapes of cocci. FEMS Microbiol Rev32: 345-360

[24]

Zhang Q, Peng H, Gao F, Liu Y, Cheng H, Thompson J, Gao GF (2009) Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis: crystal structures of the substrate-free and quaternary complex enzymes. Protein Sci18: 294-303

RIGHTS & PERMISSIONS

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

AI Summary AI Mindmap
PDF (683KB)

1100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/