Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division
Zhongyu Shi, Chunling Xuan, Huiming Han, Xia Cheng, Jundong Wang, Youjun Feng, Swaminath Srinivas, Guangwen Lu, George F. Gao
Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division
Bacterial cell division is strictly regulated in the formation of equal daughter cells. This process is governed by a series of spatial and temporal regulators, and several new factors of interest to the field have recently been identified. Here, we report the requirement of gluconate 5-dehydrogenase (Ga5DH) in cell division of the zoonotic pathogen Streptococcus suis. Ga5DH catalyzes the reversible reduction of 5-ketogluconate to D-gluconate and was localized to the site of cell division. The deletion of Ga5DH in S. suis resulted in a plump morphology with aberrant septa joining the progeny. A significant increase was also observed in cell length. These defects were determined to be the consequence of Ga5DH deprivation in S. suis causing FtsZ delocalization. In addition, the interaction of FtsZ with Ga5DH in vitro was confirmed by protein interaction assays. These results indicate that Ga5DH may function to prevent the formation of ectopic Z rings during S. suis cell division.
Streptococcus suis / Ga5DH / cell shape / cell division / FtsZ localization
[1] |
Addinall SG, Lutkenhaus J (1996) FtsZ-spirals and-arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol22: 231-237
CrossRef
Google scholar
|
[2] |
Albarracin Orio AG, Pinas GE, Cortes PR, Cian MB, Echenique J (2011) Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae. PLoS Pathog7: e1002000
CrossRef
Google scholar
|
[3] |
Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature354: 161-164
CrossRef
Google scholar
|
[4] |
Dziedzic R, Kiran M, Plocinski P, Ziolkiewicz M, Brzostek A, Moomey M, Vadrevu IS, Dziadek J, Madiraju M, Rajagopalan M (2010) Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PloS One5: e11058
CrossRef
Google scholar
|
[5] |
Elbaz M, Ben-Yehuda S (2010) The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology. PLoS Genet6: e1001119
CrossRef
Google scholar
|
[6] |
Feng Y, Zheng F, Pan X, Sun W, Wang C, Dong Y, Ju A, Ge J, Liu D, Liu C
CrossRef
Google scholar
|
[7] |
Feng Y, Li M, Zhang H, Zheng B, Han H, Wang C, Yan J, Tang J, Gao GF (2008) Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol190: 7567-7578
CrossRef
Google scholar
|
[8] |
Feng Y, Shi X, Zhang H, Zhang S, Ma Y, Zheng B, Han H, Lan Q, Tang J, Cheng J
CrossRef
Google scholar
|
[9] |
Feng Y, Zhang H, Ma Y, Gao GF (2010) Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol18: 124-131
CrossRef
Google scholar
|
[10] |
Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi AM, Grangeasse C (2012) Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae.Mol Microbiol83: 746-758
CrossRef
Google scholar
|
[11] |
Foulquier E, Pompeo F, Bernadac A, Espinosa L, Galinier A (2011) The YvcK protein is required for morphogenesis via localization of PBP1 under gluconeogenic growth conditions in Bacillus subtilis. Mol Microbiol80: 309-318
CrossRef
Google scholar
|
[12] |
Kay R, Cheng AF, Tse CY (1995) Streptococcus suis infection in Hong Kong. QJM88: 39-47
|
[13] |
Li M, Wang C, Feng Y, Pan X, Cheng G, Wang J, Ge J, Zheng F, Cao M, Dong Y
CrossRef
Google scholar
|
[14] |
Li M, Shen X, Yan J, Han H, Zheng B, Liu D, Cheng H, Zhao Y, Rao X, Wang C (2011) GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol79: 1670-1683
CrossRef
Google scholar
|
[15] |
Lu Q, Lu H, Qi J, Lu G, Gao GF (2012) An octamer of enolase from Streptococcus suis. Protein Cell3: 769-780
CrossRef
Google scholar
|
[16] |
Macrina FL, Tobian JA, Jones KR, Evans RP, Clewell DB (1982) A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene19: 345-353
CrossRef
Google scholar
|
[17] |
Mazokopakis EE, Kofteridis DP, Papadakis JA, Gikas AH, Samonis GJ (2005) First case report of Streptococcus suis septicaemia and meningitis from Greece. Eur J Neurol12: 487-489
CrossRef
Google scholar
|
[18] |
Nghia HD, Hoa NT, le Linh D, Campbell J, Diep TS, Chau NV, Mai NT, Hien TT, Spratt B, Farrar J
CrossRef
Google scholar
|
[19] |
Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J21: 685-693
CrossRef
Google scholar
|
[20] |
Sweeney NJ, Laux DC, Cohen PS (1996) Escherichia coli F-18 and E. coli K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect Immun64: 3504-3511
|
[21] |
Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H
CrossRef
Google scholar
|
[22] |
Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA (2007) A metabolic sensor governing cell size in bacteria. Cell130: 335-347
CrossRef
Google scholar
|
[23] |
Zapun A, Vernet T, Pinho MG (2008) The different shapes of cocci. FEMS Microbiol Rev32: 345-360
CrossRef
Google scholar
|
[24] |
Zhang Q, Peng H, Gao F, Liu Y, Cheng H, Thompson J, Gao GF (2009) Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis: crystal structures of the substrate-free and quaternary complex enzymes. Protein Sci18: 294-303
CrossRef
Google scholar
|
/
〈 | 〉 |