Aneuploidy in pluripotent stem cells and implications for cancerous transformation

Jie Na, Duncan Baker, Jing Zhang, Peter W. Andrews, Ivana Barbaric

PDF(545 KB)
PDF(545 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (8) : 569-579. DOI: 10.1007/s13238-014-0073-9
REVIEW
REVIEW

Aneuploidy in pluripotent stem cells and implications for cancerous transformation

Author information +
History +

Abstract

Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation.

Keywords

human pluripotent stem cells (hPSCs) / culture adaptation / aneuploidy / cancer / genetic changes

Cite this article

Download citation ▾
Jie Na, Duncan Baker, Jing Zhang, Peter W. Andrews, Ivana Barbaric. Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell, 2014, 5(8): 569‒579 https://doi.org/10.1007/s13238-014-0073-9

References

[1]
Adamah DJ, Gokhale PJ, Eastwood DJ, Rajpert De-Meyts E, Goepel J, Walsh JR, Moore HD, Andrews PW(2006) Dysfunction of the mitotic:meiotic switch as a potential cause of neoplastic conversion of primordial germ cells. Int J Androl29: 219−227
CrossRef Google scholar
[2]
Alagaratnam S, Lind GE, Kraggerud SM, Lothe RA, Skotheim RI(2011) The testicular germ cell tumour transcriptome. Int J Androl34: e133−e150; discussion e150−131
[3]
Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S (2011) Screening ethnically diverse human embryonic stem cells identifles a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol29: 1132−1144
CrossRef Google scholar
[4]
Andrews PW, Bronson DL, Benham F, Strickland S, Knowles BB(1980) A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int J Cancer26: 269−280
CrossRef Google scholar
[5]
Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS(2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans33: 1526−1530
CrossRef Google scholar
[6]
Atkin NB, Baker MC(1982) Speciflc chromosome change, i(12p), in testicular tumours? Lancet2: 1349
CrossRef Google scholar
[7]
Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S, Skotheim RI, Lothe RA, Pera MF, Colman A, Robson P (2013) BCL-XL mediates the strong selective advantage of a 20q11.21 ampliflcation commonly found in human embryonic stem cell cultures. Stem Cell Rep1: 379−386
[8]
Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW(2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol25: 207−215
CrossRef Google scholar
[9]
Barbaric I, Biga V, Gokhale PJ, Jones M, Stavish D, Glen A, Coca D, Andrews PW(2014) Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation. Stem Cell Rep (in press)
[10]
Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS(2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol209: 883−893
CrossRef Google scholar
[11]
Ben-David U, Mayshar Y, Benvenisty N(2011) Large-scale analysis reveals acquisition of lineage-speciflc chromosomal aberrations in human adult stem cells. Cell Stem Cell9: 97−102
CrossRef Google scholar
[12]
Blum B, Benvenisty N(2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle8: 3822−3830
CrossRef Google scholar
[13]
Blum B, Bar-Nur O, Golan-Lev T, Benvenisty N(2009) The antiapoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol27: 281−287
CrossRef Google scholar
[14]
Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB(1993) bcl-x, a bcl-2- related gene that functions as a dominant regulator of apoptotic cell death. Cell74: 597−608
CrossRef Google scholar
[15]
Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, Freed WJ, Robins AJ, Rao MS, Schulz TC(2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev13: 585−597
CrossRef Google scholar
[16]
Buzzard JJ, Gough NM, Crook JM, Colman A(2004) Karyotype of human ES cells during extended culture. Nat Biotechnol22: 381−382 author reply 382
[17]
Caisander G, Park H, Frej K, Lindqvist J, Bergh C, Lundin K, Hanson C(2006) Chromosomal integrity maintained in flve human embryonic stem cell lines after prolonged in vitro culture. Chromosome Res14: 131−137
CrossRef Google scholar
[18]
Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH(2005) Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identifled by confocal laser scanning microscopy. Hum Reprod20: 672−682
CrossRef Google scholar
[19]
Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D(2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature482: 53−58
CrossRef Google scholar
[20]
de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR(1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature300: 765−767
CrossRef Google scholar
[21]
Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P(2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med343: 1910−1916
CrossRef Google scholar
[22]
Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW(2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol22: 53−54
CrossRef Google scholar
[23]
Duijf PH, Benezra R(2013) The cancer biology of whole-chromosome instability. Oncogene32: 4727−4736
CrossRef Google scholar
[24]
Elliott AM, Elliott KA, Kammesheidt A(2010) High resolution array- CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol46: 234−242
CrossRef Google scholar
[25]
Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Abu Dawud R (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet14: 3129−3140
CrossRef Google scholar
[26]
Fazeli A, Liew CG, Matin MM, Elliott S, Jeanmeure LF, Wright PC, Moore H, Andrews PW(2011) Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. Int J Dev Biol55: 175−180
CrossRef Google scholar
[27]
Fragouli E, Wells D(2011) Aneuploidy in the human blastocyst. Cytogenet Genome Res133: 149−159
CrossRef Google scholar
[28]
Fragouli E, Lenzi M, Ross R, Katz-Jaffe M, Schoolcraft WB, Wells D(2008) Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod23: 2596−2608
CrossRef Google scholar
[29]
Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, Wells D(2013) The origin and impact of embryonic aneuploidy. Hum Genet132: 1001−1013
CrossRef Google scholar
[30]
Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell8: 618−628
CrossRef Google scholar
[31]
Hanahan D, Weinberg RA(2011) Hallmarks of cancer: the next generation. Cell144: 646−674
CrossRef Google scholar
[32]
Harrison NJ, Baker D, Andrews PW(2007) Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl30: 275−281discussion 281
[33]
Harrison NJ, Barnes J, Jones M, Baker D, Gokhale PJ, Andrews PW(2009) CD30 expression reveals that culture adaptation of human embryonic stem cells can occur through differing routes. Stem cells27: 1057−1065
CrossRef Google scholar
[34]
Hassold T, Hunt P(2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet2: 280−291
CrossRef Google scholar
[35]
Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA, Houssami S, Jamshidi P, Koh K, Laslett AL, Michalska A (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol24: 351−357
CrossRef Google scholar
[36]
Holland AJ, Cleveland DW(2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol10: 478−487
CrossRef Google scholar
[37]
Hovatta O, Jaconi M, Tohonen V, Bena F, Gimelli S, Bosman A, Holm F, Wyder S, Zdobnov EM, Irion O (2010) A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS One5: e10263
CrossRef Google scholar
[38]
Inzunza J, Sahlen S, Holmberg K, Stromberg AM, Teerijoki H, Blennow E, Hovatta O, Malmgren H(2004) Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod10: 461−466
CrossRef Google scholar
[39]
Jones MJ, Jallepalli PV(2012) Chromothripsis: chromosomes in crisis. Dev Cell23: 908−917
CrossRef Google scholar
[40]
Jones KT, Lane SI(2013) Molecular causes of aneuploidy in mammalian eggs. Development140: 3719−3730
CrossRef Google scholar
[41]
Korkola JE, Houldsworth J, Chadalavada RS, Olshen AB, Dobrzynski D, Reuter VE, Bosl GJ, Chaganti RS(2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res66: 820−827
CrossRef Google scholar
[42]
Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell8: 106−118
CrossRef Google scholar
[43]
Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M, Perrier AL(2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol26: 1364−1366
CrossRef Google scholar
[44]
Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet37: 1099−1103
CrossRef Google scholar
[45]
Mantel C, Guo Y, Lee MR, Kim MK, Han MK, Shibayama H, Fukuda S, Yoder MC, Pelus LM, Kim KS (2007) Checkpointapoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood109: 4518−4527
CrossRef Google scholar
[46]
Matthaei KI, Andrews PW, Bronson DL(1983) Retinoic acid fails to induce differentiation in human teratocarcinoma cell lines that express high levels of a cellular receptor protein. Exp Cell Res143: 471−474
CrossRef Google scholar
[47]
Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N(2010) Identiflcation and classiflcation of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell7: 521−531
CrossRef Google scholar
[48]
McClintock B(1984) The signiflcance of responses of the genome to challenge. Science226: 792−801
CrossRef Google scholar
[49]
Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S, Stice SL(2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol23: 19−20
CrossRef Google scholar
[50]
Mitelman (2014). Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. In: Mitelman F, Johansson B, Mertens F(eds). Accessed 2014-April-1
[51]
Murry CE, Keller G(2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132: 661−680
CrossRef Google scholar
[52]
Musacchio A, Salmon ED(2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol8: 379−393
CrossRef Google scholar
[53]
Narva E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, Dvorak P (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol28: 371−377
CrossRef Google scholar
[54]
Nowell PC, Hungerford DA(1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst25: 85−109
[55]
Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, Kadirkamanathan V, Andrews PW(2010) Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res4: 50−56
CrossRef Google scholar
[56]
Oosterhuis JW, Castedo SM, de Jong B (1990) Cytogenetics, ploidy and differentiation of human testicular, ovarian and extragonadal germ cell tumours. Cancer Surv9: 320−332
[57]
Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C(2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci117: 1269−1280
CrossRef Google scholar
[58]
Ronen D, Benvenisty N(2012) Genomic stability in reprogramming. Curr Opin Genet Dev22: 444−449
CrossRef Google scholar
[59]
Rowley JD(1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identifled by quinacrine fluorescence and Giemsa staining. Nature243: 290−293
CrossRef Google scholar
[60]
Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R(2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet379: 713−720
CrossRef Google scholar
[61]
Sebestova J, Danylevska A, Novakova L, Kubelka M, Anger M(2012) Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle11: 3011−3018
CrossRef Google scholar
[62]
Selmecki A, Forche A, Berman J(2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science313: 367−370
CrossRef Google scholar
[63]
Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J(2008) An isochromosome confers drug resistance in vivo by ampliflcation of two genes, ERG11 and TAC1. Mol Microbiol68: 624−641
CrossRef Google scholar
[64]
Skotheim RI, Monni O, Mousses S, Fossa SD, Kallioniemi OP, Lothe RA, Kallioniemi A(2002) New insights into testicular germ cell tumorigenesis from gene expression proflling. Cancer Res62: 2359−2364
[65]
Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, Van der Elst J, Liebaers I, Sermon K(2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol26: 1361−1363
CrossRef Google scholar
[66]
Stratton MR(2011) Exploring the genomes of cancer cells: progress and promise. Science331: 1553−1558
CrossRef Google scholar
[67]
Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD(2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol29: 313−314
CrossRef Google scholar
[68]
Takahashi K, Mitsui K, Yamanaka S(2003) Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature423: 541−545
CrossRef Google scholar
[69]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S(2007) Induction of pluripotent stem cells from adult human flbroblasts by deflned factors. Cell131: 861−872
CrossRef Google scholar
[70]
Tang YC, Williams BR, Siegel JJ, Amon A(2011) Identiflcation of aneuploidy-selective antiproliferation compounds. Cell144: 499−512
CrossRef Google scholar
[71]
Thompson SL, Compton DA(2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol188: 369−381
CrossRef Google scholar
[72]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM(1998) Embryonic stem cell lines derived from human blastocysts. Science282: 1145−1147
CrossRef Google scholar
[73]
Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A(2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science317: 916−924
CrossRef Google scholar
[74]
Turkmen S, Riehn M, Klopocki E, Molkentin M, Reinhardt R, Burmeister T(2011) A BACH2-BCL2L1 fusion gene resulting from a t(6;20)(q15;q11.2) chromosomal translocation in the lymphoma cell line BLUE-1. Genes Chromosomes Cancer50: 389−396
CrossRef Google scholar
[75]
Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med15: 577−583
CrossRef Google scholar
[76]
Wang N, Trend B, Bronson DL, Fraley EE(1980) Nonrandom abnormalities in chromosome 1 in human testicular cancers. Cancer Res40: 796−802
[77]
Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol27: 91−97
CrossRef Google scholar
[78]
Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA(2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol20: 1261−1264
CrossRef Google scholar
[79]
Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J (2013) Single-cell RNA-Seq proflling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol20: 1131−1139
CrossRef Google scholar
[80]
Yang S, Lin G, Tan YQ, Zhou D, Deng LY, Cheng DH, Luo SW, Liu TC, Zhou XY, Sun Z (2008) Tumor progression of cultureadapted human embryonic stem cells during long-term culture. Genes Chromosomes Cancer47: 665−679
CrossRef Google scholar
[81]
Zafarana G, Grygalewicz B, Gillis AJ, Vissers LE, van de Vliet W, van Gurp RJ, Stoop H, Debiec-Rychter M, Oosterhuis JW, van Kessel AG (2003) 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene22: 7695−7701
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(545 KB)

Accesses

Citations

Detail

Sections
Recommended

/