Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy

Derong Xu, Guifeng Wei, Ping Lu, Jianjun Luo, Xiaomin Chen, Geir Skogerbø, Runsheng Chen

PDF(520 KB)
PDF(520 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (10) : 770-782. DOI: 10.1007/s13238-014-0071-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy

Author information +
History +

Abstract

In recent years, large numbers of non-coding RNAs (ncRNAs) have been identified in C. elegans but their functions are still not well studied. In C. elegans, CEP-1 is the sole homolog of the p53 family of genes. In order to obtain transcription profiles of ncRNAs regulated by CEP-1 under normal and UV stressed conditions, we applied the ‘not-sorandom’ hexamers priming strategy to RNA sequencing in C. elegans, This NSR-seq strategy efficiently depleted rRNA transcripts from the samples and showed high technical replicability. We identified more than 1,000 ncRNAs whose apparent expression was repressed by CEP-1, while around 200 were activated. Around 40% of the CEP-1 activated ncRNAs promoters contain a putative CEP-1-binding site. CEP-1 regulated ncRNAs were frequently clustered and concentrated on the X chromosome. These results indicate that numerous ncRNAs are involved in CEP-1 transcriptional network and that these are especially enriched on the X chromosome in C. elegans.

Keywords

p53/CEP-1 / C. elegans / ncRNA / removal rRNA / NSR-seq / high technical replicability

Cite this article

Download citation ▾
Derong Xu, Guifeng Wei, Ping Lu, Jianjun Luo, Xiaomin Chen, Geir Skogerbø, Runsheng Chen. Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy. Protein Cell, 2014, 5(10): 770‒782 https://doi.org/10.1007/s13238-014-0071-y

References

[1]
Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, Bouali F, Dugimont T, Coll J, Curgy JJ (1998) H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol153: 1597-1607
CrossRef Google scholar
[2]
Agostini M, Tucci P, Chen H, Knight RA, Bano D, Nicotera P, McKeon F, Melino G (2010) p73 regulates maintenance of neural stem cell. Biochem Biophys Res Commun403: 13-17
CrossRef Google scholar
[3]
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol12: R18
CrossRef Google scholar
[4]
Allen MA, Hillier LW, Waterston RH, Blumenthal T (2011) A global analysis of C. elegans trans-splicing. Genome Res21: 255-264
CrossRef Google scholar
[5]
Armour CD, Castle JC, Chen R, Babak T, Loerch P, Jackson S, Shah JK, Dey J, Rohl CA, Johnson JM (2009) Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods6: 647-649
CrossRef Google scholar
[6]
Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH (2013) Metabolic regulation by p53 family members. Cell Metab18: 617-633
CrossRef Google scholar
[7]
Boominathan L (2010) The tumor suppressors p53, p63, and p73 are regulators of MicroRNA processing complex. PloS one5: e10615
CrossRef Google scholar
[8]
C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282: 2012-2018
CrossRef Google scholar
[9]
Christov CP, Trivier E, Krude T (2008) Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br J Cancer98: 981-988
CrossRef Google scholar
[10]
Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ, Milner J, White RJ, Johnson DL (2003) p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. Embo J22: 2810-2820
CrossRef Google scholar
[11]
Deng W, Zhu XP, Skogerbo G, Zhao Y, Fu Z, Wang YD, He HS, Cai L, Sun H, Liu CN (2006) Organization of the Caenorhabditis elegans small non-coding transcriptome: Genomic features, biogenesis, and expression. Genome Res16: 20-29
CrossRef Google scholar
[12]
Derry WB, Putzke AP, Rothman JH (2001) Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science294: 591-595
CrossRef Google scholar
[13]
Derry WB, Bierings R, van Iersel M, Satkunendran T, Reinke V, Rothman JH (2007) Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ14: 662-670
CrossRef Google scholar
[14]
Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, Lagrou C, Stehelin D, Coll J, Curgy JJ (1998) The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene16: 2395-2401
CrossRef Google scholar
[15]
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416: 560-564
CrossRef Google scholar
[16]
Fong YY, Bender L, Wang WC, Strome S (2002) Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science296: 2235-2238
CrossRef Google scholar
[17]
Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell126: 30-32
CrossRef Google scholar
[18]
Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature482: 339-346
CrossRef Google scholar
[19]
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP (2009) Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals. Nature458: 223-227
CrossRef Google scholar
[20]
He H, Wang J, Liu T, Liu XS, Li T, Wang Y, Qian Z, Zheng H, Zhu X, Wu T (2007) Mapping the C. elegans noncoding transcriptome with a whole-genome tiling microarray. Genome Res17: 1471-1477
CrossRef Google scholar
[21]
Ho J, Benchimol S (2003) Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Diff10: 404-408
CrossRef Google scholar
[22]
Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Mol Genet19: R152-R161
CrossRef Google scholar
[23]
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142: 409-419
CrossRef Google scholar
[24]
Hung T, Wang YL, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet43: 196-621
CrossRef Google scholar
[25]
Huyen Y, Jeffrey PD, Derry WB, Rothman JH, Pavletich NP, Stavridi ES, Halazonetis TD (2004) Structural differences in the DNA binding domains of human p53 and its C. elegans ortholog Cep-1. Structure12: 1237-1243
CrossRef Google scholar
[26]
Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res21: 1543-1551
CrossRef Google scholar
[27]
Jones SJM, Riddle DL, Pouzyrev AT, Velculescu VE, Hillier L, Eddy SR, Stricklin SL, Baillie DL, Waterston R, Marra MA (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res11: 1346-1352
CrossRef Google scholar
[28]
Jones TA, Otto W, Marz M, Eddy SR, Stadler PF (2009) A survey of nematode SmY RNAs. RNA Biol6: 5-8
CrossRef Google scholar
[29]
Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS, Shin DY (2001) p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene20: 5818-5825
CrossRef Google scholar
[30]
Kedde M, le Sage C, Duursma A, Zlotorynski E, van Leeuwen B, Nijkamp W, Beijersbergen R, Agami R (2006) Telomeraseindependent regulation of ATR by human telomerase RNA. J Biol Chem281: 40503-40514
CrossRef Google scholar
[31]
Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK, Villeneuve AM, Reinke V (2002) X-chromosome silencing in the germline of C. elegans. Development129: 479-492
[32]
Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, Sidow A, Attardi LD (2013) Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev27: 1016-1031
CrossRef Google scholar
[33]
Kirkpatrick KL, Mokbel K (2001) The significance of human telomerase reverse transcriptase (hTERT) in cancer. Eur J Surg Oncol27: 754-760
CrossRef Google scholar
[34]
Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A, Mann M, Neugebauer KM, Buchholz F (2011) A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol13: U186-U809
CrossRef Google scholar
[35]
Labbe JC, Hekimi S, Rokeach LA (1999) The levels of the RoRNPassociated Y RNA are dependent upon the presence of ROP-1, the Caenorhabditis elegans Ro60 protein. Genetics151: 143-150
[36]
Labbe JC, Burgess J, Rokeach LA, Hekimi S (2000) ROP-1, an RNA quality-control pathway component, affects Caenorhabditis elegans dauer formation. Proc Natl Acad Sci USA97: 13233-13238
CrossRef Google scholar
[37]
Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L, Chenchik AA, Sen GC, Komarova EA, Gudkov AV (2013) p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci USA110: E89-E98
CrossRef Google scholar
[38]
Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G (2011) The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol12: 259-265
CrossRef Google scholar
[39]
Li H, Cao Y, Berndt MC, Funder JW, Liu JP (1999) Molecular interactions between telomerase and the tumor suppressor protein p53 in vitro. Oncogene18: 6785-6794
CrossRef Google scholar
[40]
Li A, Wei G, Wang Y, Zhou Y, Zhang XE, Bi L, Chen R (2012) Identification of intermediate-size non-coding RNAs involved in the UV-induced DNA damage response in C. elegans. PloS one7: e48066
CrossRef Google scholar
[41]
Loven J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA (2012) Revisiting global gene expression analysis. Cell151: 476-482
CrossRef Google scholar
[42]
Lowe J, Shatz M, Resnick M, Menendez D (2013) Modulation of immune responses by the tumor suppressor p53. BioDiscovery8: 2
[43]
Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, Agarwal A, Auerbach R, Rozowsky J, Cheng C (2011) Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res21: 276-285
CrossRef Google scholar
[44]
Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, Xie WP, Hou YY (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer13: 461
CrossRef Google scholar
[45]
MacMorris M, Kumar M, Lasda E, Larsen A, Kraemer B, Blumenthal T (2007) A novel family of C. elegans snRNPs contains proteins associated with trans-splicing. RNA-A Publ RNA Soc13: 511-520
CrossRef Google scholar
[46]
Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol22: 181-185
CrossRef Google scholar
[47]
Maroney PA, Yu YT, Jankowska M, Nilsen TW (1996) Direct analysis of nematode cis- and trans-spliceosomes: a functional role for U5 snRNA in spliced leader addition trans-splicing and the identification of novel Sm snRNPs. RNA-A Publ RNA Soc2: 735-745
[48]
Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-lail R, Fellig Y, deGroot N, Galun E, Hochberg A (2010) The oncofetal H19 RNA connection: hypoxia, p53 and cancer. BBA-Mol Cell Res1803: 443-451
[49]
Melino G, Lu X, Gasco M, Crook T, Knight RA (2003) Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci28: 663-670
CrossRef Google scholar
[50]
Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer9: 724-737
CrossRef Google scholar
[51]
Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PloS One3: e3707
CrossRef Google scholar
[52]
Mondal AM, Horikawa I, Pine SR, Fujita K, Morgan KM, Vera E, Mazur SJ, Appella E, Vojtesek B, Blasco MA (2013) p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Investig123: 5247-5257
CrossRef Google scholar
[53]
Nam JW, Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res22: 2529-2540
CrossRef Google scholar
[54]
Ou HD, Lohr F, Vogel V, Mantele W, Dotsch V (2007) Structural evolution of C-terminal domains in the p53 family. EMBO J26: 3463-3473
CrossRef Google scholar
[55]
Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol9: 402-412
CrossRef Google scholar
[56]
Rinn JL, Loewer S, Huarte M, Cabili M, Guttman M, Regev A, Lander ES, Daley GQ, Rinn JL (2011) Large intergenic non-coding RNAs in chromatin, cancer and stem cells. FASEB J25
[57]
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol12: R22
CrossRef Google scholar
[58]
Roger L, Gadea G, Roux P (2006) Control of cell migration: a tumour suppressor function for p53? Biol Cell Under Auspices Eur Cell Biol Organ98: 141-152
CrossRef Google scholar
[59]
Sabapathy K, Klemm M, Jaenisch R, Wagner EF (1997) Regulation of ES cell differentiation by functional and conformational modulation of p53. EMBO J16: 6217-6229
CrossRef Google scholar
[60]
Schumacher B, Hofmann K, Boulton S, Gartner A (2001) The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol11: 1722-1727
CrossRef Google scholar
[61]
Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell129: 523-536
CrossRef Google scholar
[62]
Stergiou L, Doukoumetzidis K, Sendoel A, Hengartner MO (2007) The nucleotide excision repair pathway is required for UV-Cinduced apoptosis in Caenorhabditis elegans. Cell Death Diff14: 1129-1138
CrossRef Google scholar
[63]
Stiewe T, Zimmermann S, Frilling A, Esche H, Putzer BM (2002) Transactivation-deficient Delta TA-p73 acts as an oncogene. Cancer Res62: 3598-3602
[64]
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature460: 529-533
CrossRef Google scholar
[65]
Venter JC, Adams MD, Myers EW (2001) The sequence of the human genome. Science291: 1304-1351
CrossRef Google scholar
[66]
Wang Y, Chen J, Wei G, He H, Zhu X, Xiao T, Yuan J, Dong B, He S, Skogerbo G (2011) The Caenorhabditis elegans intermediate- size transcriptome shows high degree of stage-specific expression. Nucleic Acids Res39: 5203-5214
CrossRef Google scholar
[67]
Xiao T, Wang Y, Luo H, Liu L, Wei G, Chen X, Sun Y, Chen X, Skogerbo G, Chen R (2012) A differential sequencing-based analysis of the C. elegans noncoding transcriptome. RNA18: 626-639
CrossRef Google scholar
[68]
Xu DW, Wang Q, Gruber A, Bjorkholm M, Chen ZG, Zaid A, Selivanova G, Peterson C, Wiman KG, Pisa P (2000) Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene19: 5123-5133
CrossRef Google scholar
[69]
Yang A, McKeon F (2000) P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol1: 199-207
CrossRef Google scholar
[70]
Yang A, Zhu Z, Kettenbach A, Kapranov P, McKeon F, Gingeras TRStruhl K (2010) Genome-wide mapping indicates that p73 and p63 co-occupy target sites and have similar dna-binding profiles in vivo. PloS One5: e11572
CrossRef Google scholar
[71]
Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G (2012) Upregulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J279: 3159-3165
CrossRef Google scholar
[72]
Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res66: 4795-4801
CrossRef Google scholar
[73]
Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM, Pollock RE (2000) Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res60: 3655-3661
[74]
Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem282: 24731-24742
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(520 KB)

Accesses

Citations

Detail

Sections
Recommended

/