Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity

Pengda Liu, Jianping Guo, Wenjian Gan, Wenyi Wei

PDF(672 KB)
PDF(672 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (3) : 171-177. DOI: 10.1007/s13238-014-0021-8
PERSPECTIVE
PERSPECTIVE

Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity

Author information +
History +

Cite this article

Download citation ▾
Pengda Liu, Jianping Guo, Wenjian Gan, Wenyi Wei. Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein Cell, 2014, 5(3): 171‒177 https://doi.org/10.1007/s13238-014-0021-8

References

[1]
Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P (1996) Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett399: 333-338
CrossRef Google scholar
[2]
Bar-Peled L, Sabatini DM (2012) SnapShot: mTORC1 signaling at the lysosomal surface. Cell151(1390-1390): e1391
[3]
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell150: 1196-1208
CrossRef Google scholar
[4]
Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC (2010) S6K1 plays a critical role in early adipocyte differentiation. Dev Cell18: 763-774
CrossRef Google scholar
[5]
Chan EY (2009) mTORC1 phosphorylates the ULK1–mAtg13–FIP200 autophagy regulatory complex. Sci Signal2: pe51
CrossRef Google scholar
[6]
Chen JY, Lin JR, Cimprich KA, Meyer T (2012) A two-dimensional ERK–AKT signaling code for an NGF-triggered cell-fate decision. Mol Cell45: 196-209
CrossRef Google scholar
[7]
Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol29: 5657-5670
CrossRef Google scholar
[8]
Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med18: 524-533
CrossRef Google scholar
[9]
Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol16: 1865-1870
CrossRef Google scholar
[10]
Gao D, Wan L, Inuzuka H, Berg AH, Tseng A, Zhai B, Shaik S, Bennett E, Tron AE, Gasser JA (2010) Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol Cell39: 797-808
CrossRef Google scholar
[11]
Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J416: 375-385
CrossRef Google scholar
[12]
Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie87: 99-109
CrossRef Google scholar
[13]
Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell12: 9-22
CrossRef Google scholar
[14]
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell11: 859-871
CrossRef Google scholar
[15]
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell30: 214-226
CrossRef Google scholar
[16]
Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol166: 213-223
CrossRef Google scholar
[17]
Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science332: 1317-1322
CrossRef Google scholar
[18]
Humphrey SJ, Yang G, Yang P, Fazakerley DJ, Stockli J, Yang JY, James DE (2013) Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab17: 1009-1020
CrossRef Google scholar
[19]
Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J27: 1919-1931
CrossRef Google scholar
[20]
Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol4: 648-657
CrossRef Google scholar
[21]
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell115(5): 577-590
CrossRef Google scholar
[22]
Inoki K, Corradetti MN, Guan KL (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet37: 19-24
CrossRef Google scholar
[23]
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol6: 1122-1128
CrossRef Google scholar
[24]
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains Rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell127: 125-137
CrossRef Google scholar
[25]
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110: 163-175
CrossRef Google scholar
[26]
Kumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, Kim JK, Magnuson MA, Harris TE (2010) Fat cell-specific ablation of Rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes59: 1397-1406
CrossRef Google scholar
[27]
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell149: 274-293
CrossRef Google scholar
[28]
Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O, Liu D, Wan L, Zhai B, Yu Y (2013) Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol15: 1340-1350
CrossRef Google scholar
[29]
Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol10: 307-318
CrossRef Google scholar
[30]
Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell129: 1261-1274
CrossRef Google scholar
[31]
Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell10: 151-162
CrossRef Google scholar
[32]
Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC (2005) Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev19: 1773-1778
CrossRef Google scholar
[33]
Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J, Yonezawa K (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells9: 359-366
CrossRef Google scholar
[34]
Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, Zou L, Xie XJ, Corey DR, Brugarolas J (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J30: 3242-3258
CrossRef Google scholar
[35]
Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab8: 399-410
CrossRef Google scholar
[36]
Purvis JE, Lahav G (2012) Decoding the insulin signal. Mol Cell46: 715-716
CrossRef Google scholar
[37]
Purvis JE, Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. Cell152: 945-956
CrossRef Google scholar
[38]
Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53 dynamics control cell fate. Science336: 1440-1444
CrossRef Google scholar
[39]
Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer6: 729-734
CrossRef Google scholar
[40]
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling tomTORC1. Science320: 1496-1501
CrossRef Google scholar
[41]
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell141: 290-303
CrossRef Google scholar
[42]
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr Biol14: 1296-1302
CrossRef Google scholar
[43]
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science307: 1098-1101
CrossRef Google scholar
[44]
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell22: 159-168
CrossRef Google scholar
[45]
Shah OJ, Hunter T (2006) Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol26: 6425-6434
CrossRef Google scholar
[46]
Shaw RJ (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol196: 65-80
CrossRef Google scholar
[47]
Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene24: 7391-7393
CrossRef Google scholar
[48]
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature485: 109-113
CrossRef Google scholar
[49]
van Dam TJ, Zwartkruis FJ, Bos JL, Snel B (2011) Evolution of the TOR pathway. J Mol Evol73: 209-220
CrossRef Google scholar
[50]
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol9: 316-323
CrossRef Google scholar
[51]
Weber JD, Gutmann DH (2012) Deconvoluting mTOR biology. Cell Cycle11: 236-248
CrossRef Google scholar
[52]
Wullschleger S, Loewith R, Oppliger W, Hall MN (2005) Molecular organization of target of rapamycin complex 2. J Biol Chem280: 30697-30704
CrossRef Google scholar
[53]
Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell124: 471-484
CrossRef Google scholar
[54]
Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev20: 2820-2832
CrossRef Google scholar
[55]
Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell38: 768-774
CrossRef Google scholar
[56]
Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science332: 1322-1326
CrossRef Google scholar
[57]
Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature499: 485-490
CrossRef Google scholar
[58]
Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell144: 757-768
CrossRef Google scholar
[59]
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011a) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science334: 678-683
CrossRef Google scholar
[60]
Zoncu R, Efeyan A, Sabatini DM (2011b) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol12: 21-35
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(672 KB)

Accesses

Citations

Detail

Sections
Recommended

/