[1] Alegre-Abarrategui, J., and Wade-Martins, R. (2009). Parkinson disease, LRRK2 and the endocytic-autophagic pathway.
Autophagy 5 , 1208-1210 .
10.4161/auto.5.8.9894[2] Becker, E.B., and Bonni, A. (2006). Pin1 mediates neural-specific activation of the mitochondrial apoptotic machinery.
Neuron 49, 655-662 .
10.1016/j.neuron.2006.01.034[3] Berwick, D.C., and Harvey, K. (2011). LRRK2 signaling pathways: the key to unlocking neurodegeneration?
Trends Cell Biol 21, 257-265 .
10.1016/j.tcb.2011.01.001[4] Borsello, T., Clarke, P.G., Hirt, L., Vercelli, A., Repici, M., Schorderet, D.F., Bogousslavsky, J., and Bonny, C. (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia.
Nat Med 9, 1180-1186 .
10.1038/nm911[5] Bravo-San Pedro, J.M., Niso-Santano, M., Gomez-Sanchez, R., Pizarro-Estrella, E., Aiastui-Pujana, A., Gorostidi, A., Climent, V., Lopez de Maturana, R., Sanchez-Pernaute, R., Lopez de Munain, A.,
. (2013). The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway.
Cell Mol Life Sci 70, 121-136 .
10.1007/s00018-012-1061-y[6] Chen, C.Y., Weng, Y.H., Chien, K.Y., Lin, K.J., Yeh, T.H., Cheng, Y.P., Lu, C.S., and Wang, H.L. (2012). (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD.
Cell Death Differ 19, 1623-1633 .
10.1038/cdd.2012.42[7] Chen, H., and Chan, D.C. (2009). Mi tochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases.
Hum Mol Genet 18, R169-176 .
10.1093/hmg/ddp326[8] Cookson, M.R. (2010). Therole of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease.
Nat Rev Neurosci 11, 791-797 .
10.1038/nrn2935[9] Cui, J., Yu, M., Niu, J., Yue, Z., and Xu, Z. (2011). Exp ression of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibits the Processing of uMtCK to Induce Cell Death in cell culture model system.
Biosci Rep .(In Press).
10.1042/BSR20100127[10] Cui, J., Zhang, M., Zhang, Y.Q., and Xu, Z.H. (2007). JNK pathway: diseases and therapeutic potential.
Acta Pharmacol Sin 28, 601-608 .
10.1111/j.1745-7254.2007.00579.x[11] Dagda, R.K., Zhu, J., and Chu, C.T. (2009). Mitochondrial kinases in Parkinson’s disease: converging insights from neurotoxin and genetic models.
Mitochondrion 9, 289-298 .
10.1016/j.mito.2009.06.001[12] Egan, D.F., Shackelford, D.B., Mihaylova, M.M., Gelino, S., Kohnz, R.A., Mair, W., Vasquez, D.S., Joshi, A., Gwinn, D.M., Taylor, R.,
. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy.
Science 331, 456-461 .
10.1126/science.1196371[13] Exner, N., Lutz, A.K., Haass, C., and Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences.
EMBO J 31, 3038-3062 .
10.1038/emboj.2012.170[14] Friedman, L.G., Lachenmayer, M.L., Wang, J., He, L., Poulose, S.M., Komatsu, M., Holstein, G.R., and Yue, Z. (2012). Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain.
J Neurosci 32, 7585-7593 .
10.1523/JNEUROSCI.5809-11.2012[15] Gloeckner, C.J., Schumacher, A., Boldt, K., and Ueffing, M. (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro.
J Neurochem 109, 959-968 .
10.1111/j.1471-4159.2009.06024.x[16] Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M.P., Beilina, A., Blackinton, J., Thomas, K.J.,
. (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin.
Neurobiol Dis 23, 329-341 .
10.1016/j.nbd.2006.04.001[17] Harris, H., and Rubinsztein, D.C. (2012). Control of autophagy as a therapy for neurodegenerative disease.
Nat Rev Neurol 8, 108-117 .
10.1038/nrneurol.2011.200[18] He, Y., Kamenecka, T.M., Shin, Y., Song, X., Jiang, R., Noel, R., Duckett, D., Chen, W., Ling, Y.Y., Cameron, M.D.,
. (2011). Sy nthesis and SAR of novel quinazolines as potent and brain-penetrant cjun N-terminal kinase (JNK) inhibitors.
Bioorg Med Chem Lett 21, 1719-1723 .
10.1016/j.bmcl.2011.01.079[19] Hsu, C.H., Chan, D., and Wolozin, B. (2010). LRRK2 and the stress response: interaction with MKKs and JNK-interacting proteins.
Neurodegener Dis 7, 68-75 .
10.1159/000285509[20] Itakura, E., Kishi-Itakura, C., Koyama-Honda, I., and Mizushima, N. (2012). Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy.
J Cell Sci 125, 1488-1499 .
10.1242/jcs.094110[21] Itoh, K., Nakamura, K., Iijima, M., and Sesaki, H. (2013). Mitochondrial dynamics in neurodegeneration.
Trends Cell Biol 23, 64-71 .
10.1016/j.tcb.2012.10.006[22] Jankowski, M. (2007). [Th e role of JNK pathway in familial Parkinson’s disease].
Postepy Biochem 53, 297-303 .
[23] Kuan, C.Y., and Burke, R.E. (2005). Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy.
Curr Drug Targets CNS Neurol Disord 4, 63-67 .
10.2174/1568007053005145[24] Kukekov, N.V., Xu, Z., and Greene, L.A. (2006). Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs.
J Biol Chem 281, 15517-15524 .
10.1074/jbc.M601056200[25] Kumari, U., and Tan, E.K. (2009). LRRK2 in Parkinson’s disease: genetic and clinical studies from patients.
FEBS J 276, 6455-6463 .
10.1111/j.1742-4658.2009.07344.x[26] Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation.
Blood 112, 1493-1502 .
10.1182/blood-2008-02-137398[27] Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease.
Cell 132, 27-42 .
10.1016/j.cell.2007.12.018[28] Li , X., Patel, J.C., Wang, J., Avshalumov, M.V., Nicholson, C., Buxbaum, J.D., Elder, G.A., Rice, M.E., and Yue, Z. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S.
J Neurosci 30,1788-1797 .
10.1523/JNEUROSCI.5604-09.2010[29] Li, X., Tan, Y.C., Poulose, S., Olanow, C.W., Huang, X.Y., and Yue, Z. (2007). Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants.
J Neurochem 103, 238-247 .
[30] Manzoni, C. (2012). LRRK2 and autophagy: a common pathway for disease.
Biochem Soc Trans 40, 1147-1151 .
10.1042/BST20120126[31] Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation.
Curr Opin Cell Biol 22, 132-139 .
10.1016/j.ceb.2009.12.004[32] Niu, J., Yu, M., Wang, C., and Xu, Z. (2012). Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein.
J Neurochem 122, 650-658 .
10.1111/j.1471-4159.2012.07809.x[33] Orenstein, S.J., Kuo, S.H., Tasset, I., Arias, E., Koga, H., FernandezCarasa, I., Cortes, E., Honig, L.S., Dauer, W., Consiglio, A.,
. (2013). Interplay of LRRK2 with chaperone-mediated autophagy.
Nat Neurosci 16, 394-406 .
10.1038/nn.3350[34] Ramonet, D., Daher, J.P., Lin, B.M., Stafa, K., Kim, J., Banerjee, R., Westerlund, M., Pletnikova, O., Glauser, L., Yang, L.,
. (2011). Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.
PLoS One 6, e18568.
10.1371/journal.pone.0018568[35] Rodriguez-Enriquez, S., Kai, Y., Maldonado, E., Currin, R.T., and Lemasters, J.J. (2009). Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes.
Autophagy 5, 1099-1106 .
10.4161/auto.5.8.9825[36] Saha, S., Guillily, M.D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., Hsu, C.H., Segal, L., Raghavan, K., Matsumoto, K.,
. (2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans.
J Neurosci 29, 9210-9218 .
10.1523/JNEUROSCI.2281-09.2009[37] Santos, D., and Cardoso, S.M. (2012). Mitochondrial dynamics and neuronal fate in Parkinson’s disease.
Mitochondrion 12, 428-437 .
10.1016/j.mito.2012.05.002[38] Springer, W., and Kahle, P.J. (2011). Regulation of PINK1-Parkinmediated mitophagy.
Autophagy 7, 266-278 .
10.4161/auto.7.3.14348[39] Stephan, J.S., and Herman, P.K. (2006). The regulation of autophagy in eukaryotic cells: do all roads pass through Atg1?
Autophagy 2, 146-148 .
[40] Tamura, Y., Itoh, K., and Sesaki, H. (2011). SnapShot: Mitochondrial dynamics.
Cell 145, 1158,1158.e1.
[41] Tong, Y., and Shen, J. (2012). Genetic analysis of Parkinson’s diseaselinked leucine-rich repeat kinase 2.
Biochem Soc Trans 40, 1042-1046 .
10.1042/BST20120112[42] Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A., and Davis, R.J. (2000). Requirement of JNK for stress-induced activation of the cytochrome cmediated death pathway.
Science 288, 870-874 .
10.1126/science.288.5467.870[43] Wang, X., Yan, M.H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S.G., Perry, G., Casadesus, G., and Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1.
Hum Mol Genet 21, 1931-1944 .
10.1093/hmg/dds003[44] West, A.B., Moore, D.J., Biskup, S., Bugayenko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity.
Proc Natl Acad Sci U S A 102, 16842-16847 .
10.1073/pnas.0507360102[45] West, A.B., Moore, D.J., Choi, C., Andrabi, S.A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K.L., Dawson, V.L.,
. (2007). Parkinson’s disease-associated mutations in LRRK2 link enhanced GTPbinding and kinase activities to neuronal toxicity.
Hum Mol Genet 16, 223-232 .
10.1093/hmg/ddl471[46] White, L.R., Toft, M., Kvam, S.N., Farrer, M.J., and Aasly, J.O. (2007). MAPK-pathway activity, Lrrk2 G2019S, and Parkinson’s disease.
J Neurosci Res 85, 1288-1294 .
10.1002/jnr.21240[47] Xu, Z., Kukekov, N.V., and Greene, L.A. (2003). POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis.
EMBO J 22, 252-261 .
10.1093/emboj/cdg021[48] Xu, Z., Kukekov, N.V., and Greene, L.A. (2005). Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feedforward loop.
Mol Cell Biol 25, 9949-9959 .
10.1128/MCB.25.22.9949-9959.2005[49] Xu, Z., Maroney, A.C., Dobrzanski, P., Kukekov, N.V., and Greene, L.A. (2001). The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis.
Mol Cell Biol 21, 4713-4724 .
10.1128/MCB.21.14.4713-4724.2001