ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression

Yuangang Zhu, Chunyan Wang, Mei Yu, Jie Cui, Liang Liu, Zhiheng Xu()

PDF(1259 KB)
PDF(1259 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (9) : 711-721. DOI: 10.1007/s13238-013-3910-3
RESEARCH ARTICLE
RESEARCH ARTICLE

ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression

  • Yuangang Zhu, Chunyan Wang, Mei Yu, Jie Cui, Liang Liu, Zhiheng Xu()
Author information +
History +

Abstract

Mutations in LR RK2 (Leucine rich repeat kinase 2) are a major cause of Parkinson’s disease (PD). We and others reported recently that expression of the pathogenic gainoffunction mutant form of LRRK2, LRRK2 G2019S, induces mitochondrial fi ssion in neurons through DLP1. Here we provide evidence that expression of LRRK2 G2019S stimulates mitochondria loss or mitophagy. We have characterized several LRRK2 interacting proteins and found that LRRK2 interacts with ULK1 which plays an essential role in autophagy. Knockdown of either ULK1 or DLP1 expression with shRNAs suppresses LRRK2 G2019S expression-induced mitochondrial clearance, suggesting that LRRK2 G2019S expression induces mitochondrial fi ssion through DLP1 followed by mitophagy via an ULK1 dependent pathway. In addition to ULK1, we found that LRRK2 interacts with the endogenous MKK4/7, JIP3 and coordinates with them in the activation of JNK signaling. Interestingly, LRRK2 G2019S-induced loss of mitochondria can also be suppressed by 3 different JNK inhibitors, implying the involvement of the JNK pathway in the pathogenic mechanism of mutated LRRK2. Thus our fi ndings may provide an insight into the complicated pathogenesis of PD as well as some clues to the development of novel therapeutic strategies.

Keywords

LRRK2 / Parkinson’s disease / mitophagy / ULK1 / JNK / DLP1

Cite this article

Download citation ▾
Yuangang Zhu, Chunyan Wang, Mei Yu, Jie Cui, Liang Liu, Zhiheng Xu. ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression. Prot Cell, 2013, 4(9): 711‒721 https://doi.org/10.1007/s13238-013-3910-3

References

[1] Alegre-Abarrategui, J., and Wade-Martins, R. (2009). Parkinson disease, LRRK2 and the endocytic-autophagic pathway. Autophagy 5 , 1208-1210 .10.4161/auto.5.8.9894
[2] Becker, E.B., and Bonni, A. (2006). Pin1 mediates neural-specific activation of the mitochondrial apoptotic machinery. Neuron 49, 655-662 .10.1016/j.neuron.2006.01.034
[3] Berwick, D.C., and Harvey, K. (2011). LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol 21, 257-265 .10.1016/j.tcb.2011.01.001
[4] Borsello, T., Clarke, P.G., Hirt, L., Vercelli, A., Repici, M., Schorderet, D.F., Bogousslavsky, J., and Bonny, C. (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9, 1180-1186 .10.1038/nm911
[5] Bravo-San Pedro, J.M., Niso-Santano, M., Gomez-Sanchez, R., Pizarro-Estrella, E., Aiastui-Pujana, A., Gorostidi, A., Climent, V., Lopez de Maturana, R., Sanchez-Pernaute, R., Lopez de Munain, A., . (2013). The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci 70, 121-136 .10.1007/s00018-012-1061-y
[6] Chen, C.Y., Weng, Y.H., Chien, K.Y., Lin, K.J., Yeh, T.H., Cheng, Y.P., Lu, C.S., and Wang, H.L. (2012). (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death Differ 19, 1623-1633 .10.1038/cdd.2012.42
[7] Chen, H., and Chan, D.C. (2009). Mi tochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18, R169-176 .10.1093/hmg/ddp326
[8] Cookson, M.R. (2010). Therole of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci 11, 791-797 .10.1038/nrn2935
[9] Cui, J., Yu, M., Niu, J., Yue, Z., and Xu, Z. (2011). Exp ression of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibits the Processing of uMtCK to Induce Cell Death in cell culture model system. Biosci Rep .(In Press).10.1042/BSR20100127
[10] Cui, J., Zhang, M., Zhang, Y.Q., and Xu, Z.H. (2007). JNK pathway: diseases and therapeutic potential. Acta Pharmacol Sin 28, 601-608 .10.1111/j.1745-7254.2007.00579.x
[11] Dagda, R.K., Zhu, J., and Chu, C.T. (2009). Mitochondrial kinases in Parkinson’s disease: converging insights from neurotoxin and genetic models. Mitochondrion 9, 289-298 .10.1016/j.mito.2009.06.001
[12] Egan, D.F., Shackelford, D.B., Mihaylova, M.M., Gelino, S., Kohnz, R.A., Mair, W., Vasquez, D.S., Joshi, A., Gwinn, D.M., Taylor, R., . (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 .10.1126/science.1196371
[13] Exner, N., Lutz, A.K., Haass, C., and Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31, 3038-3062 .10.1038/emboj.2012.170
[14] Friedman, L.G., Lachenmayer, M.L., Wang, J., He, L., Poulose, S.M., Komatsu, M., Holstein, G.R., and Yue, Z. (2012). Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci 32, 7585-7593 .10.1523/JNEUROSCI.5809-11.2012
[15] Gloeckner, C.J., Schumacher, A., Boldt, K., and Ueffing, M. (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109, 959-968 .10.1111/j.1471-4159.2009.06024.x
[16] Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M.P., Beilina, A., Blackinton, J., Thomas, K.J., . (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23, 329-341 .10.1016/j.nbd.2006.04.001
[17] Harris, H., and Rubinsztein, D.C. (2012). Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8, 108-117 .10.1038/nrneurol.2011.200
[18] He, Y., Kamenecka, T.M., Shin, Y., Song, X., Jiang, R., Noel, R., Duckett, D., Chen, W., Ling, Y.Y., Cameron, M.D., . (2011). Sy nthesis and SAR of novel quinazolines as potent and brain-penetrant cjun N-terminal kinase (JNK) inhibitors. Bioorg Med Chem Lett 21, 1719-1723 .10.1016/j.bmcl.2011.01.079
[19] Hsu, C.H., Chan, D., and Wolozin, B. (2010). LRRK2 and the stress response: interaction with MKKs and JNK-interacting proteins. Neurodegener Dis 7, 68-75 .10.1159/000285509
[20] Itakura, E., Kishi-Itakura, C., Koyama-Honda, I., and Mizushima, N. (2012). Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125, 1488-1499 .10.1242/jcs.094110
[21] Itoh, K., Nakamura, K., Iijima, M., and Sesaki, H. (2013). Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23, 64-71 .10.1016/j.tcb.2012.10.006
[22] Jankowski, M. (2007). [Th e role of JNK pathway in familial Parkinson’s disease]. Postepy Biochem 53, 297-303 .
[23] Kuan, C.Y., and Burke, R.E. (2005). Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr Drug Targets CNS Neurol Disord 4, 63-67 .10.2174/1568007053005145
[24] Kukekov, N.V., Xu, Z., and Greene, L.A. (2006). Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J Biol Chem 281, 15517-15524 .10.1074/jbc.M601056200
[25] Kumari, U., and Tan, E.K. (2009). LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. FEBS J 276, 6455-6463 .10.1111/j.1742-4658.2009.07344.x
[26] Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502 .10.1182/blood-2008-02-137398
[27] Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42 .10.1016/j.cell.2007.12.018
[28] Li , X., Patel, J.C., Wang, J., Avshalumov, M.V., Nicholson, C., Buxbaum, J.D., Elder, G.A., Rice, M.E., and Yue, Z. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J Neurosci 30,1788-1797 .10.1523/JNEUROSCI.5604-09.2010
[29] Li, X., Tan, Y.C., Poulose, S., Olanow, C.W., Huang, X.Y., and Yue, Z. (2007). Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants. J Neurochem 103, 238-247 .
[30] Manzoni, C. (2012). LRRK2 and autophagy: a common pathway for disease. Biochem Soc Trans 40, 1147-1151 .10.1042/BST20120126
[31] Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22, 132-139 .10.1016/j.ceb.2009.12.004
[32] Niu, J., Yu, M., Wang, C., and Xu, Z. (2012). Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J Neurochem 122, 650-658 .10.1111/j.1471-4159.2012.07809.x
[33] Orenstein, S.J., Kuo, S.H., Tasset, I., Arias, E., Koga, H., FernandezCarasa, I., Cortes, E., Honig, L.S., Dauer, W., Consiglio, A., . (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16, 394-406 .10.1038/nn.3350
[34] Ramonet, D., Daher, J.P., Lin, B.M., Stafa, K., Kim, J., Banerjee, R., Westerlund, M., Pletnikova, O., Glauser, L., Yang, L., . (2011). Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6, e18568.10.1371/journal.pone.0018568
[35] Rodriguez-Enriquez, S., Kai, Y., Maldonado, E., Currin, R.T., and Lemasters, J.J. (2009). Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5, 1099-1106 .10.4161/auto.5.8.9825
[36] Saha, S., Guillily, M.D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., Hsu, C.H., Segal, L., Raghavan, K., Matsumoto, K., . (2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29, 9210-9218 .10.1523/JNEUROSCI.2281-09.2009
[37] Santos, D., and Cardoso, S.M. (2012). Mitochondrial dynamics and neuronal fate in Parkinson’s disease. Mitochondrion 12, 428-437 .10.1016/j.mito.2012.05.002
[38] Springer, W., and Kahle, P.J. (2011). Regulation of PINK1-Parkinmediated mitophagy. Autophagy 7, 266-278 .10.4161/auto.7.3.14348
[39] Stephan, J.S., and Herman, P.K. (2006). The regulation of autophagy in eukaryotic cells: do all roads pass through Atg1? Autophagy 2, 146-148 .
[40] Tamura, Y., Itoh, K., and Sesaki, H. (2011). SnapShot: Mitochondrial dynamics. Cell 145, 1158,1158.e1.
[41] Tong, Y., and Shen, J. (2012). Genetic analysis of Parkinson’s diseaselinked leucine-rich repeat kinase 2. Biochem Soc Trans 40, 1042-1046 .10.1042/BST20120112
[42] Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A., and Davis, R.J. (2000). Requirement of JNK for stress-induced activation of the cytochrome cmediated death pathway. Science 288, 870-874 .10.1126/science.288.5467.870
[43] Wang, X., Yan, M.H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S.G., Perry, G., Casadesus, G., and Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21, 1931-1944 .10.1093/hmg/dds003
[44] West, A.B., Moore, D.J., Biskup, S., Bugayenko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102, 16842-16847 .10.1073/pnas.0507360102
[45] West, A.B., Moore, D.J., Choi, C., Andrabi, S.A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K.L., Dawson, V.L., . (2007). Parkinson’s disease-associated mutations in LRRK2 link enhanced GTPbinding and kinase activities to neuronal toxicity. Hum Mol Genet 16, 223-232 .10.1093/hmg/ddl471
[46] White, L.R., Toft, M., Kvam, S.N., Farrer, M.J., and Aasly, J.O. (2007). MAPK-pathway activity, Lrrk2 G2019S, and Parkinson’s disease. J Neurosci Res 85, 1288-1294 .10.1002/jnr.21240
[47] Xu, Z., Kukekov, N.V., and Greene, L.A. (2003). POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 22, 252-261 .10.1093/emboj/cdg021
[48] Xu, Z., Kukekov, N.V., and Greene, L.A. (2005). Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feedforward loop. Mol Cell Biol 25, 9949-9959 .10.1128/MCB.25.22.9949-9959.2005
[49] Xu, Z., Maroney, A.C., Dobrzanski, P., Kukekov, N.V., and Greene, L.A. (2001). The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol 21, 4713-4724 .10.1128/MCB.21.14.4713-4724.2001
AI Summary AI Mindmap
PDF(1259 KB)

Accesses

Citations

Detail

Sections
Recommended

/