Heat shock cognate 71 (HSC71) regulates cellular antiviral response by impairing formation of VISA aggregates

Zhigang Liu1,2, Shu-Wen Wu1, Cao-Qi Lei1, Qian Zhou1, Shu Li1, Hong-Bing Shu1, Yan-Yi Wang1,3()

PDF(755 KB)
PDF(755 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (5) : 373-382. DOI: 10.1007/s13238-013-3902-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Heat shock cognate 71 (HSC71) regulates cellular antiviral response by impairing formation of VISA aggregates

  • Zhigang Liu1,2, Shu-Wen Wu1, Cao-Qi Lei1, Qian Zhou1, Shu Li1, Hong-Bing Shu1, Yan-Yi Wang1,3()
Author information +
History +

Abstract

In response to viral infection, RIG-I-like RNA helicases detect viral RNA and signal through the mitochondrial adapter protein VISA. VISA activation leads to rapid activation of transcription factors IRF3 and NF-κB, which collaborate to induce transcription of type I interferon (IFN) genes and cellular antiviral response. It has been demonstrated that VISA is activated by forming prisonlike aggregates. However, how this process is regulated remains unknown. Here we show that overexpression of HSC71 resulted in potent inhibition of virus-triggered transcription of IFNB1 gene and cellular antiviral response. Consistently, knockdown of HSC71 had opposite effects. HSC71 interacted with VISA, and negatively regulated virus-triggered VISA aggregation. These findings suggest that HSC71 functions as a check against VISA-mediated antiviral response.

Keywords

HSC71 / VISA / Cellular antiviral response / prion-like aggregate

Cite this article

Download citation ▾
Zhigang Liu, Shu-Wen Wu, Cao-Qi Lei, Qian Zhou, Shu Li, Hong-Bing Shu, Yan-Yi Wang. Heat shock cognate 71 (HSC71) regulates cellular antiviral response by impairing formation of VISA aggregates. Prot Cell, 2013, 4(5): 373‒382 https://doi.org/10.1007/s13238-013-3902-3

References

[1] Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801 .10.1016/j.cell.2006.02.015
[2] Allen, I.C., Moore, C.B., Schneider, M., Lei, Y., Davis, B.K., Scull, M.A., Gris, D., Roney, K.E., Zimmermann, A.G., Bowzard, J.B., . (2011). NLRX1 protein attenuates infl ammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaBsignaling pathways. Immunity 34, 854-865 .10.1016/j.immuni.2011.03.026
[3] Andrejeva, J., Childs, K.S., Young, D.F., Carlos, T.S., Stock, N., Goodbourn, S., and Randall, R.E. (2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101, 17264-17269 .10.1073/pnas.0407639101
[4] Chen, R., Li, M., Zhang, Y., Zhou, Q., and Shu, H.B.The E3 ubiquitin ligase MARCH8 negatively regulates IL-1beta-induced NF-kappaB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci U S A 109, 14128-14133 .10.1073/pnas.1205246109
[5] Chen, T., and Cao, X. (2010). Stress for maintaining memory: HSP70 as a mobile messenger for innate and adaptive immunity. Eur J Immunol 40, 1541-1544 .10.1002/eji.201040616
[6] Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., and Chen, Z.J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461 .10.1016/j.cell.2011.06.041
[7] Jia, Y., Song, T., Wei, C., Ni, C., Zheng, Z., Xu, Q., Ma, H., Li, L., Zhang, Y., He, X., . (2009). Negative regulation of MAVSmediated innate immune response by PSMA7. J Immunol 183, 4241-4248 .10.4049/jimmunol.0901646
[8] Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., . (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104, 14050-14055 .10.1073/pnas.0704014104
[9] Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981-988 .10.1038/ni1243
[10] Lei, C.Q., Zhong, B., Zhang, Y., Zhang, J., Wang, S., and Shu, H.B. (2010). Glycogen synthase kinase 3beta regulates IRF3 transcription factor-mediated antiviral response via activation of the kinase TBK1. Immunity 33, 878-889 .10.1016/j.immuni.2010.11.021
[11] Li, Q., Yan, J., Mao, A.P., Li, C., Ran, Y., Shu, H.B., and Wang, Y.Y. (2011). Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta- triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. Proc Natl Acad Sci U S A 108, 19341-19346 .10.1073/pnas.1110946108
[12] Li, Y., Chen, R., Zhou, Q., Xu, Z., Li, C., Wang, S., Mao, A., Zhang, X., He, W., and Shu, H.B. (2012). LSm14A is a processing bodyassociated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection. Proc Natl Acad Sci U S A 109, 11770-11775 .10.1073/pnas.1203405109
[13] Li, Y., Li, C., Xue, P., Zhong, B., Mao, A.P., Ran, Y., Chen, H., Wang, Y.Y., Yang, F., and Shu, H.B. (2009). ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci U S A 106, 7945-7950 .10.1073/pnas.0900818106
[14] Li, Z., Menoret, A., and Srivastava, P. (2002). Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14, 45-51 .10.1016/S0952-7915(01)00297-7
[15] Liu, X.Y., Chen, W., Wei, B., Shan, Y.F., and Wang, C. (2011). IFNinduced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol 187, 2559-2568 .10.4049/jimmunol.1100963
[16] Mao, A.P., Li, S., Zhong, B., Li, Y., Yan, J., Li, Q., Teng, C., and Shu, H.B. (2010). Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response. J Biol Chem 285, 9470-9476 .10.1074/jbc.M109.071043
[17] Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172 .10.1038/nature04193
[18] Moore, C.B., Bergstralh, D.T., Duncan, J.A., Lei, Y., Morrison, T.E., Zimmermann, A.G., Accavitti-Loper, M.A., Madden, V.J., Sun, L., Ye, Z., . (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573-577 .10.1038/nature06501
[19] Nakhaei, P., Mesplede, T., Solis, M., Sun, Q., Zhao, T., Yang, L., Chuang, T.H., Ware, C.F., Lin, R., and Hiscott, J. (2009). The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog 5, e1000650.10.1371/journal.ppat.1000650
[20] Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identifi cation and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682 .10.1016/j.cell.2005.08.012
[21] Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J., and McQuade, K.L. (1998). Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657-665 .10.1016/S1074-7613(00)80570-1
[22] Tang, E.D., and Wang, C.Y. (2010). TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One 5, e9172.10.1371/journal.pone.0009172
[23] Triantafilou, M., and Triantafilou, K. (2004). Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32, 636-639 .10.1042/BST0320636
[24] Tsan, M.F., and Gao, B. (2004). Heat shock protein and innate immunity. Cell Mol Immunol 1, 274-279 .
[25] Wang, L., Liu, Y.T., Hao, R., Chen, L., Chang, Z., Wang, H.R., Wang, Z.X., and Wu, J.W. (2011). Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP). J Biol Chem 286, 15883-15894 .10.1074/jbc.M110.201814
[26] Wang, Y.Y., Liu, L.J., Zhong, B., Liu, T.T., Li, Y., Yang, Y., Ran, Y., Li, S., Tien, P., and Shu, H.B. (2010). WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation. Proc Natl Acad Sci U S A 107, 815-820 .10.1073/pnas.0908967107
[27] Wang, Y.Y., Ran, Y., and Shu, H.B. (2012). Linear ubiquitination of NEMO brakes the antiviral response. Cell Host Microbe 12, 129-131 .10.1016/j.chom.2012.07.006
[28] Xu, L., Xiao, N., Liu, F., Ren, H., and Gu, J. (2009). Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proc Natl Acad Sci U S A 106, 1530-1535 .10.1073/pnas.0811029106
[29] Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19, 727-740 .10.1016/j.molcel.2005.08.014
[30] Yasukawa, K., Oshiumi, H., Takeda, M., Ishihara, N., Yanagi, Y., Seya, T., Kawabata, S., and Koshiba, T. (2009). Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2, ra47.10.1126/scisignal.2000287
[31] Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNAinduced innate antiviral responses. Nat Immunol 5, 730-737 .10.1038/ni1087
[32] You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009). PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 10, 1300-1308 .10.1038/ni.1815
[33] Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330 .10.1016/j.cell.2010.03.029
[34] Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., . (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538-550 .10.1016/j.immuni.2008.09.003
[35] Zhong, B., Zhang, L., Lei, C., Li, Y., Mao, A.P., Yang, Y., Wang, Y.Y., Zhang, X.L., and Shu, H.B. (2009). The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397-407 .10.1016/j.immuni.2009.01.008
AI Summary AI Mindmap
PDF(755 KB)

Accesses

Citations

Detail

Sections
Recommended

/