[1] Basler, C.F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., and Klenk, H.D. (2000). The Ebola virus VP35 protein functions as a type I IFN an tagonist.
Proc Natl Acad Sci U S A 97, 12289-12294 .
10.1073/pnas.220398297[2] Breban, R., Riou, J., and Fontanet, A. (2013). Interhuman transmissibility of Middle East respiratory sy ndrome coronavirus: estimation of pandemic risk.
The Lancet 382, 694-649 .
10.1016/S0140-6736(13)61492-0[3] Corse, E., and Machamer, C.E. (2000). Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of viruslike particles.
J Virol 74, 4319-4326 .
10.1128/JVI.74.9.4319-4326.2000[4] Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., and Fong, J.H. (2013). Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures.
J Virol 87, 6604-6614 .
10.1128/JVI.00009-13[5] de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., and Enjuanes, L. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group.
J Virol 87, 7790-7792 .
10.1128/JVI.01244-13[6] Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., and Barretto, N. (2007). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus.
J Biol Chem 282, 32208-32221 .
10.1074/jbc.M704870200[7] de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., and Limpens, R.W. (2013). MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment.
J Gen Virol 94, 1749-1760 .
10.1099/vir.0.052910-0[8] Freundt, E.C., Yu, L., Park, E., Lenardo, M.J., and Xu, X.N. (2009). Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.
J Virol 83, 6631-6640 .
10.1128/JVI.00367-09[9] Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., and Baric, R.S. (2009). Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling.
J Virol 83, 6689-6705 .
10.1128/JVI.02220-08[10] Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., and Baric, R.S. (2007). Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane.
J Virol 81, 9812-9824 .
10.1128/JVI.01012-07[11] Frieman, M., and Baric, R. (2008). Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation.
Microbiol Mol Biol Rev 72, 672-685 .
10.1128/MMBR.00015-08[12] García-Sastre, A., and Biron, C.A. (2006). Type 1 interferons and the virus-host relationship a lesson in détente.
Science 312, 879-882 .
10.1126/science.1125676[13] Hiscox, J.A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D., and Brooks, G. (2001). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus.
J Virol 75, 506-512 .
10.1128/JVI.75.1.506-512.2001[14] Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., and Makino, S. (2011). SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.
PloS Pathog 7, e1002433.
10.1371/journal.ppat.1002433[15] Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K.G., and Makino, S. (2009). A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein.
Nat Struct Mol Biol 16, 1134-1140 .
10.1038/nsmb.1680[16] Khan, S., Fielding, B.C., Tan, T.H., Chou, C.F., Shen, S., and Lim, S.G. (2006). Over-expression of severe acute respiratory syndrome coronavirus 3b protein induces both apoptosis and necrosis in Vero E6 Cells.
Virus Res 122, 20-27 .
10.1016/j.virusres.2006.06.005[17] Kochs, G., García-Sastre, A., and Martínez-Sobrido, L. (2007). Multiple anti-interferon actions of the influenza A virus NS1 protein
. J Virol 81 , 7011-7021 .
10.1128/JVI.02581-06[18] Kopecky-Bromberg, S.A., Martínez-Sobrido, L., Frieman, M., Baric, R.A., and Palese, P. (2007). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists.
J Virol 81, 548-557 .
10.1128/JVI.01782-06[19] Lai, M.M.C., Perlman, S., and Anderson, J.L. (2006). Coronaviridae. In:Knipe D .M., Howley P .M.
, eds. Fields Virology, 5th edition. Philadelphia: Lippincott Williams & Wilkins , pp. 1305-1335 .
[20] Lei, X, Liu, X, Ma, Y, Sun, Z, Yang, Y, and Jin, Q. (2010). The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3activation and type I interferon responses.
J Virol 34, 8051-8061 .
10.1128/JVI.02491-09[21] Lontok, E., Corse, E., and Machamer, C.E. (2004). Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site.
J Virol 78, 5913-5922 .
10.1128/JVI.78.11.5913-5922.2004[22] Lu, X., Pan, J., Tao, J., and Guo, D. (2011). SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism.
Virus Genes 42, 37-45 .
10.1007/s11262-010-0544-x[23] Lu, G, Hu, Y, Wang, Q, Qi, J, Gao, F, and Li, Y. (2013). Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26.
Nature 500, 227-231 .
10.1038/nature12328[24] Koetzner, C.A., Kuo, L., Goebel, S.J., Dean, A.B., Parker, M.M., and Masters, P.S. (2010). MHV Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus.
J Virol 84, 8262-8274 .
10.1128/JVI.00385-10[25] Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., and Butterfield, Y.S. (2003). The Ge nome sequence of the SARSassociated coronavirus.
Science 300, 1399-1404 .
10.1126/science.1085953[26] McBride, R., and Fielding, B.C. (2012). The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis.
Viruses 4, 2902-2923 .
10.3390/v4112902[27] Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., and Chu, K. (2005). Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E.
J Gen Virol 86, 1423-1434 .
10.1099/vir.0.80671-0[28] Nieto-Torres, J.L., Dediego, M.L., Alvarez, E., Jiménez-Guarde?o, J.M., Regla-Nava, J.A., and Llorente, M. (2011). Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein.
Virology 415, 69-82 .
10.1016/j.virol.2011.03.029[29] Niwa, H., Yamamura, K., and Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector.
Gene 108, 193-199 .
10.1016/0378-1119(91)90434-D[30] Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., and Dijkman, R. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.
Nature 495, 251-254 .
10.1038/nature12005[31] Randall, R.E., and Goodbourn, S. (2008). Interferons and viruses: an interplay between induction, signaling, antiviral responses and virus countermeasures.
J Gen Virol 89, 1-47 .
10.1099/vir.0.83391-0[32] Reid, S.P., Leung, L.W., Hartman, A.L., Martinez, O., Shaw, M.L., and Carbonnelle, C.(2006). Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation
. J Virol 80, 5156-5167 .
10.1128/JVI.02349-05[33] Shaw, M.L. 2009. Henipaviruses employ a multifaceted approach to evade the antiviral interferon response.
Viruses 1, 1190-1203 .
10.3390/v1031190[34] Siu, K.L., Kok, K.H., Ng, M.H., Poon, V.K., Yuen, K.Y., and Zheng, B.J. (2009). Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex
. J Biol Chem 284, 16202-16209 .
10.1074/jbc.M109.008227[35] Sun, L., Xing, Y., Chen, X., Zheng, Y., Yang, Y., and Nichols, D.B. (2012). Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling.
PLoS One 7, e30802.
10.1371/journal.pone.0030802[36] Sun, W., Li, Y., Chen, L., Chen, H., You, F., and Zhou, X. (2009). ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.
Proc Natl Acad Sci U S A 106, 8653-8658 .
10.1073/pnas.0900850106[37] Surjit, M., Kumar, R., Mishra, R.N., Reddy, M.K., Chow, V.T., and Lal, S.K. (2005). The sever e acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation.
J Virol 79, 11476-11486 .
10.1128/JVI.79.17.11476-11486.2005[38] Susan, R.W., and Julian, L.L. (2011). Coronavir us pathogenesis.
Adv Virus Res 81, 95-164 .
[39] Taylor, K.E., and Mossman, K.L. (2013). Recent advances in understanding viral evasion of type I interferon.
Immunology 138, 190-197 .
10.1111/imm.12038[40] Totura, A.L., and Baric, R.S. (2012). SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon.
Curr Opin Virol 2, 264-275 .
10.1016/j.coviro.2012.04.004[41] van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T M., Raj, V.S., and Zaki, A.M. (2012). Genomic c haracterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans.
MBio 3, pii: e00473-12.
10.1128/mBio.00473-12[42] Wang, B., Xi, X., Lei, X., Zhang, X., Cui, S., and Wang, J. (2013). Enterovir us 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses.
PLoS Pathog 9, e1003231.
10.1371/journal.ppat.1003231[43] Wathelet, M.G., Orr, M., Frieman, M.B., and Baric, R.S. (2007). Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain.
J Virol 81, 11620-11633 .
10.1128/JVI.00702-07[44]
World Health Organization. (2013). Novel coronavirus inf1ection—update.
http:// www.who.int/csr/don/2013_08_01/en/index.html.[45] Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G., and Hiscox, J.A. (2001). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division.
J Virol 75, 9345-9356 .
10.1128/JVI.75.19.9345-9356.2001[46] Ye, Y., Hauns, K., Langland, J.O., Jacobs, B.L., and Hogue, B.G. (2007). Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon Antagonist.
J Virol 81, 2554-2563 .
10.1128/JVI.01634-06[47] You, J., Dove, B.K., Enjuanes, L., DeDiego, M.L., Alvarez, E., and Howell, G. (2005). Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein.
J Gen Virol 86, 3303-3310 .
10.1099/vir.0.81076-0[48] Yuan, X., Yao, Z., Shan, Y., Chen, B., Yang, Z., and Wu, J. (2005a). Nucleolar localization of non-structural protein 3b, a protein specifi-cally encoded by the severe acute respiratory syndrome coronavirus.
Virus Res 114, 70-79 .
10.1016/j.virusres.2005.06.001[49] Yuan, X., Shan, Y., Zhao, Z., Chen, J., and Cong, Y. (2005b). G0/G1 arr est and apoptosis induced by SARS-CoV 3b protein in transfected cells.
Virol J 2, 66.
10.1186/1743-422X-2-66[50] Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., and Fouchier, R.A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.
N Engl J Med 367, 1814-1820 .
10.1056/NEJMoa1211721[51] Zhao, L., Rose, K.M., Elliott, R., Van Rooijen, N., and Weiss, S.R. (2011). Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus.
J Virol 85, 10058-10068 .
10.1128/JVI.05075-11