Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development

Yuchen Liu1, Luming Zhao1, Dameng Li1, Yuan Yin2, Chen-Yu Zhang1(), Jing Li1(), Yujing Zhang1()

PDF(775 KB)
PDF(775 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (12) : 932-941. DOI: 10.1007/s13238-013-3092-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development

  • Yuchen Liu1, Luming Zhao1, Dameng Li1, Yuan Yin2, Chen-Yu Zhang1(), Jing Li1(), Yujing Zhang1()
Author information +
History +

Abstract

Tumor-associated macrophages (TAMs) mostly exhibit M2-like (alternatively activated) properties and play positive roles in angiogenesis and tumorigenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic factor. During tumor development, TAMs secrete VEGF and other factors to promote angiogenesis; thus, anti-treatment against TAMs and VEGF can repress cancer development, which has been demonstrated in clinical trials and on an experimental level. In the present work, we show that miR-150 is an oncomir because of its promotional effect on VEGF. MiR-150 targets TAMs to up-regulate their secretion of VEGF in vitro. With the utilization of cell-derived vesicles, named microvesicles (MVs), we transferred antisense RNA targeted to miR-150 into mice and found that the neutralization of miR-150 down-regulates miR-150 and VEGF levels in vivo and attenuates angiogenesis. Therefore, we proposed the therapeutic potential of neutralizing miR-150 to treat cancer and demonstrated a novel, natural, microvesicle-based method for the transfer of nucleic acids.

Keywords

microvesicle / miR-150 / tumorigenesis / VEGF / neutralization / attenuation

Cite this article

Download citation ▾
Yuchen Liu, Luming Zhao, Dameng Li, Yuan Yin, Chen-Yu Zhang, Jing Li, Yujing Zhang. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development. Prot Cell, 2013, 4(12): 932‒941 https://doi.org/10.1007/s13238-013-3092-z

References

[1] Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29, 341-345 .10.1038/nbt.1807
[2] Baek, J.H., Mahon, P.C., Oh, J., Kelly, B., Krishnamachary, B., Pearson, M., Chan, D.A., Giaccia, A.J., and Semenza, G.L. (2005). OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell 17, 503-512 .10.1016/j.molcel.2005.01.011
[3] Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 .10.1016/S0092-8674(04)00045-5
[4] Bingle, L., Brown, N.J., and Lewis, C.E. (2002). The role of tumourassociated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254-265 .10.1002/path.1027
[5] Bolat, F., Kayaselcuk, F., Nursal, T.Z., Yagmurdur, M.C., Bal, N., and Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25, 365-372 .
[6] Brahimi-Horn, C., and Pouyssegur, J. (2006). The role of the hypoxiainducible factor in tumor metabolism growth and invasion. Bulletin du cancer 93, E73-80 .
[7] Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C.Y. (2012). Secreted microRNAs: a new form of i ntercellular communication. Trends Cell Biol 22, 125-132 .10.1016/j.tcb.2011.12.001
[8] Coffelt, S.B., Hughes, R., and Lewis, C.E. (2009). Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796, 11-18 .
[9] Colla, S., Tagliaferri, S., Morandi, F., Lunghi, P., Donofrio, G., Martorana, D., Mancini, C., Lazzaretti, M., Mazzera, L., Ravanetti, L., et al. (2007). The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110, 4464-4475 .10.1182/blood-2007-02-074617
[10] Cristofanilli, M., Charnsangavej, C., and Hortobagyi, G.N. (2002). Angiogenesis modulation in cancer research: novel clinical approaches. Nat Rev Drug Discov 1, 415-426 .10.1038/nrd819
[11] Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269 .10.1038/nrc1840
[12] Ferrara, N. (2010). Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 21, 21-26 .10.1016/j.cytogfr.2009.11.003
[13] Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9, 669-676 .10.1038/nm0603-669
[14] Folkman, J. (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273-286 .10.1038/nrd2115
[15] Fukuda, K., Kobayashi, A., and Watabe, K. (2012). The role of tumorassociated macrophage in tumor progression. Front Biosci (Schol Ed) 4, 787-798 .10.2741/S299
[16] Goga, A., and Benz, C. (2007). Anti-oncomir suppression of tumor phenotypes. Mol Interv 7, 199-202, 180 .10.1124/mi.7.4.6
[17] Hanahan, D., and Coussens, L.M. (2012). Accessories to the crime functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 .10.1016/j.ccr.2012.02.022
[18] Kim, K.J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H.S., and Ferrara, N. (1993). Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-844 .10.1038/362841a0
[19] Kota, J., Chivukula, R.R., O‘Donnell, K.A., Wentzel, E.A., Montgomery, C.L., Hwang, H.W., Chang, T.C., Vivekanandan, P., Torbenson, M., Clark, K.R., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005-1017 .10.1016/j.cell.2009.04.021
[20] Lewis, C.E., Leek, R., Harris, A., and McGee, J.O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumorassociated macrophages. J Leukoc Biol 57, 747-751 .
[21] Lewis, C.E., and Pollard, J.W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605-612 .10.1158/0008-5472.CAN-05-4005
[22] Lin, E.Y., Nguyen, A.V., Russell, R.G., and Pollard, J.W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193, 727-740 .10.1084/jem.193.6.727
[23] Lin, E.Y., and Pollard, J.W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67, 5064-5066 .10.1158/0008-5472.CAN-07-0912
[24] Luo, Y., Zhou, H., Krueger, J., Kaplan, C., Lee, S.H., Dolman, C., Markowitz, D., Wu, W., Liu, C., Reisfeld, R.A., et al. (2006). Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116, 2132-2141 .10.1172/JCI27648
[25] McDonnell, C.O., Bouchier-Hayes, D.J., Toomey, D., Foley, D., Kay, E.W., Leen, E., and Walsh, T.N. (2003). Effect of neoadjuvant chemoradiotherapy on angiogenesis in oesophageal cancer. Br J Surg 90, 1373-1378 .10.1002/bjs.4338
[26] Millan Nunez-Cortes, J. (1991). Angiogenesis: a crucial element in tumor development. An Med Interna 8, 369-371 .
[27] Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618-631 .10.1038/nrc2444
[28] Ozer, A., Wu, L.C., and Bruick, R.K. (2005). The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A 102, 7481-7486 .10.1073/pnas.0502716102
[29] Presta, L.G., Chen, H., O‘Connor, S.J., Chisholm, V., Meng, Y.G., Krummen, L., Winkler, M., and Ferrara, N. (1997). Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57, 4593-4599 .
[30] Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 .10.1016/j.cell.2010.03.014
[31] Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Squadrito, M.L., Segura, I., Li, X., Knevels, E., et al. ( 2011). HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44 .10.1016/j.ccr.2010.11.009
[32] Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I., Cheresh, D.A., and Johnson, R.S. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814-818 .10.1038/nature07445
[33] Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654-659 .10.1038/ncb1596
[34] van den Boorn, J.G., Schlee, M., Coch, C., and Hartmann, G. (2011). SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29, 325-326 .10.1038/nbt.1830
[35] Warren, R.S., Yuan, H., Matli, M.R., Gillett, N.A., and Ferrara, N. (1995). Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95, 1789-1797 .10.1172/JCI117857
[36] Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., et al. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133-144 .10.1016/j.molcel.2010.06.010
AI Summary AI Mindmap
PDF(775 KB)

Accesses

Citations

Detail

Sections
Recommended

/