The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability

Demeng Sun1, Qing Liu1, Yao He1, Chengliang Wang1, Fangming Wu2, Changlin Tian1,2(), Jianye Zang1()

PDF(1381 KB)
PDF(1381 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (12) : 921-931. DOI: 10.1007/s13238-013-3089-7
RESEARCH ARTICLE
RESEARCH ARTICLE

The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability

  • Demeng Sun1, Qing Liu1, Yao He1, Chengliang Wang1, Fangming Wu2, Changlin Tian1,2(), Jianye Zang1()
Author information +
History +

Abstract

Mycosin-1 protease (MycP1) is a serine protease anchored to the inner membrane of Mycobacterium tuberculosis, and is essential in virulence factor secretion through the ESX-1 type VII secretion system (T7SS). Bacterial physiology studies demonstrated that MycP1 plays a dual role in the regulation of ESX-1 secretion and virulence, primarily through cleavage of its secretion substrate EspB. MycP1 contains a putative N-terminal inhibitory propeptide and a catalytic triad of Asp-His-Ser, classic hallmarks of a subtilase family serine protease. The MycP1 propeptide was previously reported to be initially inactive and activated after prolonged incubation. In this study, we have determined crystal structures of MycP1 with (MycP124-422) and without (MycP163-422) the propeptide, and conducted EspB cleavage assays using the two proteins. Very high structural similarity was observed in the two crystal structures. Interestingly, protease assays demonstrated positive EspB cleavage for both proteins, indicating that the putative propeptide does not inhibit protease activity. Molecular dynamic simulations showed higher rigidity in regions guarding the entrance to the catalytic site in MycP124-422 than in MycP163-422, suggesting that the putative propeptide might contribute to the conformational stability of the active site cleft and surrounding regions.

Keywords

type VII ESX-1 secretion system / serine protease / propeptide / crystal structure / EspB cleavage / molecular dynamic simulations

Cite this article

Download citation ▾
Demeng Sun, Qing Liu, Yao He, Chengliang Wang, Fangming Wu, Changlin Tian, Jianye Zang. The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability. Prot Cell, 2013, 4(12): 921‒931 https://doi.org/10.1007/s13238-013-3089-7

References

[1] Abdallah, A.M., Gey van Pittius, N.C., Champion, P.A., Cox, J., Luirink, J., Vandenbroucke-Grauls, C.M., Appelmelk, B.J., and Bitter, W. (2007). Type VII secretion--mycobacteria show the way. Nat Rev Microbiol 5, 883-891 .10.1038/nrmicro1773
[2] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., Mc-Coy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954 .10.1107/S0907444902016657
[3] Bott, R., Ultsch, M., Kossiakoff, A., Graycar, T., Katz, B., and Power, S. (1988). The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 A and an analysis of the structural consequences of peroxide inactivation. J Biol Chem 263, 7895-7906 .
[4] Brodin, P., Rosenkrands, I., Andersen, P., Cole, S.T., and Brosch, R. (2004). ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12, 500-508 .10.1016/j.tim.2004.09.007
[5] Brown, G.D., Dave, J.A., Gey van Pittius, N.C., Stevens, L., Ehlers, M.R., and Beyers, A.D. (2000). The mycosins of Mycobacterium tuberculosis H37Rv: a family of subtilisin-like serine proteases. Gene 254, 147-155 .10.1016/S0378-1119(00)00277-8
[6] Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21 .10.1107/S0907444909042073
[7] Cianci, M., Tomaszewski, B., Helliwell, J.R., and Halling, P.J. (2010). Crystallographic analysis of counterion effects on subtilisin enzymatic action in acetonitrile. J Am Chem Soc 132, 2293-2300 .10.1021/ja908703c
[8] Dave, J.A., Gey van Pittius, N.C., Beyers, A.D., Ehlers, M.R., and Brown, G.D. (2002). Mycosin-1, a subtilisin-like serine protease of Mycobacterium tuberculosis, is cell wall-associated and expressed during infection of macrophages. BMC microbiology 2, 30.10.1186/1471-2180-2-30
[9] DiGiuseppe Champion, P.A., and Cox, J.S. (2007). Protein secretion systems in Mycobacteria. Cell Microbiol 9, 1376-1384 .10.1111/j.1462-5822.2007.00943.x
[10] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[11] Fortune, S.M., Jaeger, A., Sarracino, D.A., Chase, M.R., Sassetti, C.M., Sherman, D.R., Bloom, B.R., and Rubin, E.J. (2005). Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A 102, 10676-10681 .10.1073/pnas.0504922102
[12] Fu, X., Inouye, M., and Shinde, U. (2000). Folding pathway mediated by an intramolecular chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not obligatorily linked. J Biol Chem 275, 16871-16878 .10.1074/jbc.275.22.16871
[13] Gallagher, T., Gilliland, G., Wang, L., and Bryan, P. (1995). The prosegment-subtilisin BPN’ complex: crystal structure of a specific ‘foldase’. Structure 3, 907-914 .10.1016/S0969-2126(01)00225-8
[14] Goddette, D.W., Paech, C., Yang, S.S., Mielenz, J.R., Bystroff, C., Wilke, M.E., and Fletterick, R.J. (1992). The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 A resolution. J Mol Biol 228, 580-595 .10.1016/0022-2836(92)90843-9
[15] Gouet, P., Courcelle, E., Stuart, D.I., and Metoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308 .10.1093/bioinformatics/15.4.305
[16] Hendrickson, W.A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51-58 .10.1126/science.1925561
[17] Jain, S.C., Shinde, U., Li, Y., Inouye, M., and Berman, H.M. (1998). The crystal structure of an autoprocessed Ser221Cys-subtilisin Epropeptide complex at 2.0 A resolution. J Mol Biol 284, 137-144 .10.1006/jmbi.1998.2161
[18] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 .10.1093/bioinformatics/btm404
[19] Ligon, L.S., Hayden, J.D., and Braunstein, M. (2012). The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis (Edinb) 92, 121-132 .10.1016/j.tube.2011.11.005
[20] McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., and Read, R.J. (2005). Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61, 458-464 .10.1107/S0907444905001617
[21] McLaughlin, B., Chon, J.S., MacGurn, J.A., Carlsson, F., Cheng, T.L., Cox, J.S., and Brown, E.J. (2007). A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PloS Pathog 3, e105.10.1371/journal.ppat.0030105
[22] Ohol, Y.M., Goetz, D.H., Chan, K., Shiloh, M.U., Craik, C.S., and Cox, J.S. (2010). Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7, 210-220 .10.1016/j.chom.2010.02.006
[23] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276, 307-326 .10.1016/S0076-6879(97)76066-X
[24] Raghavan, S., Manzanillo, P., Chan, K., Dovey, C., and Cox, J.S. (2008). Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454, 717-721 .10.1038/nature07219
[25] Shinde, U., and Inouye, M. (1993). Intramolecular chaperones and protein folding. Trends Biochem Sci 18, 442-446 .10.1016/0968-0004(93)90146-E
[26] Shinde, U., and Inouye, M. (1995). Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism. J Mol Biol 247, 390-395 .10.1006/jmbi.1994.0147
[27] Shinde, U., Li, Y., Chatterjee, S., and Inouye, M. (1993). Folding pathway mediated by an intramolecular chaperone. Proc Natl Acad Sci U S A 90, 6924-6928 .10.1073/pnas.90.15.6924
[28] Siezen, R.J., and Leunissen, J.A. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6, 501-523 .10.1002/pro.5560060301
[29] Smith, C.A., Toogood, H.S., Baker, H.M., Daniel, R.M., and Baker, E.N. (1999). Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. J Mol Biol 294, 1027-1040 .10.1006/jmbi.1999.3291
[30] Solomonson, M., Huesgen, P.F., Wasney, G.A., Watanabe, N., Gruninger, R.J., Prehna, G., Overall, C.M., and Strynadka, N.C. (2013). Structure of the Mycosin-1 Protease from the Mycobacterial ESX-1 Protein Type VII Secretion System. J Biol Chem 288, 17782-17790 .10.1074/jbc.M113.462036
[31] Stanley, S.A., Raghavan, S., Hwang, W.W., and Cox, J.S. (2003). Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 100, 13001-13006 .10.1073/pnas.2235593100
[32] Tanaka, S., Matsumura, H., Koga, Y., Takano, K., and Kanaya, S. (2007). Four new crystal structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight into structural changes during maturation. J Mol Biol 372, 1055-1069 .10.1016/j.jmb.2007.07.027
[33] Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F., and Murshudov, G.N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60, 2184-2195 .10.1107/S0907444904023510
[34] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J. (2005). GROMACS: fast, flexible, and free. J Comput Chem 26, 1701-1718 .10.1002/jcc.20291
[35] Xu, J., Laine, O., Masciocchi, M., Manoranjan, J., Smith, J., Du, S.J., Edwards, N., Zhu, X., Fenselau, C., and Gao, L.Y. (2007). A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 66, 787-800 .10.1111/j.1365-2958.2007.05959.x
[36] Zhu, X.L., Ohta, Y., Jordan, F., and Inouye, M. (1989). Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339, 483-484 .10.1038/339483a0
AI Summary AI Mindmap
PDF(1381 KB)

Accesses

Citations

Detail

Sections
Recommended

/