MicroRNA-21 in the pathogenesis of acute kidney injury

Ya-Feng Li1,2(), Ying Jing3, Jielu Hao4, Nathan C Frankfort5, Xiaoshuang Zhou1,2, Bing Shen6, Xinyan Liu1,2, Lihua Wang1,2, Rongshan Li2,7()

PDF(291 KB)
PDF(291 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (11) : 813-819. DOI: 10.1007/s13238-013-3085-y
MINI-REVIEW
MINI-REVIEW

MicroRNA-21 in the pathogenesis of acute kidney injury

  • Ya-Feng Li1,2(), Ying Jing3, Jielu Hao4, Nathan C Frankfort5, Xiaoshuang Zhou1,2, Bing Shen6, Xinyan Liu1,2, Lihua Wang1,2, Rongshan Li2,7()
Author information +
History +

Abstract

Acute kidney injury (AKI), associated with significant morbidity and mortality, is widely known to involve epithelial apoptosis, excessive inflammation, and fibrosis in response to ischemia or reperfusion injury, which results in either chronic pathological changes or death. Therefore, it is imperative that investigations are conducted in order to find effective, early diagnoses, and therapeutic targets needed to help prevent and treat AKI. However, the mechanisms modulating the pathogenesis of AKI still remain largely undetermined. MicroRNAs (miRNAs), small noncoding RNA molecules, play an important role in several fundamental biological and pathological processes by a post transcriptional regulatory function of gene expression. MicroRNA-21 (miR-21) is a recently identified, typical miRNA that is functional as a regulator known to be involved in apoptosis as well as inflammatory and fibrotic signaling pathways in AKI. As a result, miR-21 is now considered a novel biomarker when diagnosing and treating AKI. This article reviews the correlative literature and research progress regarding the roles of miR-21 in AKI.

Keywords

microRNA / microRNA-21 / gene expression / acute kidney injury

Cite this article

Download citation ▾
Ya-Feng Li, Ying Jing, Jielu Hao, Nathan C Frankfort, Xiaoshuang Zhou, Bing Shen, Xinyan Liu, Lihua Wang, Rongshan Li. MicroRNA-21 in the pathogenesis of acute kidney injury. Prot Cell, 2013, 4(11): 813‒819 https://doi.org/10.1007/s13238-013-3085-y

References

[1] Akcay, A., Nguyen, Q., and Edelstein, C.L. (2009). Mediators of infl ammation in acute kidney injury. Mediators Infl amm 2009, 137072.10.1155/2009/137072
[2] Bonventre, J.V., and Weinberg, J.M. (2003). Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14, 2199-2210 .10.1097/01.ASN.0000079785.13922.F6
[3] Bonventre, J.V., and Zuk, A. (2004). Ischemic acute renal failure: an infl ammatory disease? Kidney Int 66, 480-485 .10.1111/j.1523-1755.2004.761_2.x
[4] Buscaglia, L.E.B., and Li, Y. (2011). Apoptosis and the target genes of microRNA-21. Chin J Cancer 30, 371-380 .
[5] Carpenter, S., and O’Neill,L.(2009). Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 422, 1-10 .10.1042/BJ20090616
[6] Chan, J.A., Krichevsky, A.M., and Kosik, K.S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65, 6029-6033 .10.1158/0008-5472.CAN-05-0137
[7] Chen, Y., Chen, J., Wang, H., Shi, J., Wu, K., Liu, S., Liu, Y., and Wu, J. (2013). HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9, e1003248.10.1371/journal.ppat.1003248
[8] Cheng, Y., Zhu. , P., Yang, J., Liu, X., Dong, S., Wang, X., Chun, B., Zhuang, J., and Zhang, C. (2010). Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87,431-439 .10.1093/cvr/cvq082
[9] Chung, A.C.K., Dong, Y., Yang, W., Zhong, X., Li, R., and Lan, H.Y. (2013). Smad7 suppresses renal fibrosis via altering expression of TGF- miR-21 protects hmicroRNAs. Mol Ther 21, 388-398 .10.1038/mt.2012.251
[10] Daemen, M.A., Veer, C.V.t., Denecker, G., Heemskerk, V.H., Wolfs, T.G., Clauss, M., Vandenabeele, P., and Buurman, W.A. (1999).Inhibition of apoptosis induced by ischemia-reperfusion prevents infl ammation. J Clin Invest 104, 541-549 .10.1172/JCI6974
[11] Devarajan, P. (2006). Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17, 1503-1520 .10.1681/ASN.2006010017
[12] Dey, N., Ghosh-Choudhury,N., Kasinath, B.S., and Choudhury, G.G. (2012). TGF Am Soc Nephrol 17, 1503 and Buurman, W.A. (1999). Inhibition of apoptosis induced by ischemia-reperfusion prevents infl ammation. J Clin 7, e42316.
[13] Dobrovolskaia, M.A., Medvedev, A.E., Thomas, K.E., Cuesta, N., Toshchakov, V., Ren, T., Cody, M.J., Michalek, S.M., Rice, N.R., and Vogel, S.N. (2003). Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR ?homotolerance? versus ?heterotolerance? on NF-kappa B signaling pathway components. J Immunol 170, 508-519 .
[14] Du, J., Cao, X., Zou, L., Chen, Y., Guo, J., Chen, Z., Hu, S., and Zheng, Z. (2013a). MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One 8, e63390.10.1371/journal.pone.0063390
[15] Du, T., Zou, X., Cheng, J., Wu, S., Zhong, L., Ju, G., Zhu, J., Liu, G., Zhu, Y., and Xia, S. (2013b). Human Wharton’s jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. Stem Cell Res Ther 4, 59. (In Press).10.1186/scrt215
[16] Freitas, M.C.S., Uchida, Y., Lassman, C., Danovitch, G.M., Busuttil, R.W., and Kupiec-weglinski,J.W. (2011). Type I interferon pathway mediates renal ischemia/reperfusion injury. Transplantation 92, 131-138 .10.1097/TP.0b013e318220586e
[17] Friedman, J.M., and Jones, P.A. (2009). MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 139, 466-472 .
[18] Fujita, S., Ito, T., Mizutani, T., Minoguchi, S., Yamamichi, N., Sakurai, K., and Iba, H. (2008). miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378, 492-504 .10.1016/j.jmb.2008.03.015
[19] Glowacki, F., Savary, G., Gnemmi, V., Buob, D., Hauwaert, C.V.D., Loguidice, J.-m.,Bouy (2008). miR-21 Gene expression triggered b, et al. (2013). Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One 8, e58014.10.1371/journal.pone.0058014
[20] Godwin, J.G., Ge, X., Stephan, K., Jurisch, A., Tullius, S.G., and IaComini, J. (2010). Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 107, 14339-14344 .10.1073/pnas.0912701107
[21] Gregory, P.A., Bracken, C.P., Bert, A.G., and Goodall, G.J. (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7, 3112-3118 .10.4161/cc.7.20.6851
[22] Hao, J.L., Li, Y.F., and Li, R.S. (2013). A novel mechanism of NALP3 inducing ischemia reperfusion injury by activating MAPK pathway in acute renal failure. Medical hypotheses 80, 463-465 .10.1016/j.mehy.2012.12.041
[23] Humphreys, B.D., Czerniak, S., Dirocco, D.P., Hasnain, W., Cheema, R., and Bonventre, J.V. (2011). Repair of injured proximal tubuledoes not involve specialized progenitors. Proc Natl Acad Sci U S A 108.10.1073/pnas.1100629108
[24] Humphreys, B.D., Valerius, M.T., Kobayashi, A., Mugford, J.W., Soeung, S., Duffield,J.S., Mcmahon, A.P., and Bonventre, J.V. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284-291 .10.1016/j.stem.2008.01.014
[25] Jang, H.R., and Rabb, H. (2009). The innate immune response in ischemic acute kidney injury. Clin Immunol 130, 41-50 .10.1016/j.clim.2008.08.016
[26] Jenkins, K., and Mansell, A. (2010). TIR-containing adaptors in Toll-like receptor signalling. Cytokine 49, 237-244 .10.1016/j.cyto.2009.01.009
[27] Jia, P., Teng, J., Zou, J., Fang, Y., Zhang, X., Bosnjak, Z.J., Liang, M., and Ding, X. (2013). miR-21 Contributes to Xenon-conferred Amelioration of Renal Ischemia-Reperfusion Injury in Mice. Anesthesiology 119, 621-630 .10.1097/ALN.0b013e318298e5f1
[28] Kawagoe, T., Sato, S., Matsushita, K., H, H.K., Matsui, K., Kumagai, Y., Saitoh, T., Kawai, T., Takeuchi, O., and Akira, S. (2008). Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9, 684-691 .10.1038/ni.1606
[29] Koyner, J.L., Garg, A.X., Coca, S.G., Sint, K., Thiessen-Philbrook, H., Patel, U.D., Shlipak, M.G., and Parikh, C.R. (2012). Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol 23, 905-914 .10.1681/ASN.2011090907
[30] Krichevsky, A.M., and Gabriely, G. (2009). miR-21: a small multi-faceted RNA. J Cell Mol Med 13, 39-53 .10.1111/j.1582-4934.2008.00556.x
[31] Kumarswamy, R., Volkmann, I., and Thum, T. (2011). Regulation and function of miRNA-21 in health and disease. RNA Biol 8, 706-713 .10.4161/rna.8.5.16154
[32] Lagos-Quintana,M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739 .10.1016/S0960-9822(02)00809-6
[33] Lameire, N., Biesen, W.V., and Vanholder, R. (2006). The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol 2, 364-377 .10.1038/ncpneph0218
[34] Lameire, N., and Vanholder, R. (2001). Pathophysiologic features and prevention of human and experimental acute tubular necrosis. J Am Soc Nephrol 12 Suppl 17, S20-32 .
[35] Laterza, O.F., Lim, L., Garrett-Engele,P.W., Vlasakova, K., Muniappa, N., Tanaka, W.K., Johnson, J.M., Sina, J.F., Fare, T.L., Sistare, F.D., . (2009). Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55, 1977-1983 .10.1373/clinchem.2009.131797
[36] Lin, S., Lo, Y., and Wu, H. (2010). Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885-890 .10.1038/nature09121
[37] Lindsay, M. (2008). microRNAs and the immune response. Trends Immunol 29, 343-351 .10.1016/j.it.2008.04.004
[38] Lu, Z., Liu, M., Stribinskis, V., Klinge, C.M., Ramos, K.S., Colburn, N.H., and Li, Y. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373-4379 .10.1038/onc.2008.72
[39] Lv, L., Huang, F., Mao, H., Li, M., Li, X., Yang, M., and Yu, X. (2013). MicroRNA-21 is overexpressed in renal cell carcinoma. Int J Biol Markers 28, e201-207 .10.5301/JBM.2013.10831
[40] O’Neill,L., and Bowie, A. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353-364 .10.1038/nri2079
[41] Rana, A., Sathyanarayana, P., and Lieberthal, W. (2001). Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 6, 83-102 .10.1023/A:1009680229931
[42] Ren, X.-P., Wu, J., Wang, X., Sartor, M.A., Qian, J., Jones, K., Nicolaou, P., Pritchard, T.J., and Fan, G.-C. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357-2366 .10.1161/CIRCULATIONAHA.108.814145
[43] Rifkin, D.E., Coca, S.G., and Kalantar-Zadeh,K.(2012). Does AKI truly lead to CKD? J Am Soc Nephrol 23, 979-984 .10.1681/ASN.2011121185
[44] Saikumar, J., Hoffmann, D., Kim, T.-m., Gonzalez, V.R., Zhang, Q., Goering, P.L., Brown, R.P., Bijol, V., Park, P., Waikar, S.S., .(2012). Expression, circulation, and excretion profile of micro-RNA-21, -155, and-18a following acute kidney injury. Toxicol Sci 129, 256-267 .10.1093/toxsci/kfs210
[45] Sheedy, F.J., Palsson-mcdermott,E., Hennessy, E.J., Martin, C., O’leary,J.J., Ruan, Q., Johnson, D.S., Chen, Y., and O’neill,L.A.J. (2010). Negative regulation of TLR4 via targeting of the proinfl ammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11, 141-147 .10.1038/ni.1828
[46] Taganov, K.D., Boldin, M.P., Chang, K.-J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103, 12481-12486 .10.1073/pnas.0605298103
[47] Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376 .10.1146/annurev.immunol.21.120601.141126
[48] Talotta, F., Cimmino, A., Matarazzo, M.R., Casalino, L., Vita, G.D., D’esposito,M., Lauro, R.D., and Verde, P. (2009). An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28, 73-84 .10.1038/onc.2008.370
[49] Thum, T., Catalucci, D., and Bauersachs, J. (2008a). MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 79, 562-570 .10.1093/cvr/cvn137
[50] Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., . (2008b). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980-984 .10.1038/nature07511
[51] Trindade, A.J., Medvetz, D.A., Neuman, N.A., Myachina, F., Yu, J., Priolo, C., and Henske, E.P. (2013). MicroRNA-21 is induced by rapamycin in a model of tuberous sclerosis (TSC) and lymphangioleiomyomatosis (LAM). PLoS One 8, e60014.10.1371/journal.pone.0060014
[52] Vasudevan, S., Tong, Y., and Steitz, J. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931-1934 .10.1126/science.1149460
[53] Velu, C.S., Baktula, A.M., and Grimes, H.L. (2009). Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 113, 4720-4728 .10.1182/blood-2008-11-190215
[54] Wang, J., Gao, Y., Ma, M., Li, M., Zou, D., Yang, J., Zhu, Z., and Zhao, X. (2013). Effect of miR-21 on Renal Fibrosis by Regulating MMP-9 and TIMP1 in kk-ay Diabetic Nephropathy Mice. Cell Biochem Biophys . (In Press).10.1007/s12013-013-9539-2
[55] Xu, X., Kriegel, A.J., Liu, Y., Usa, K., Mladinov, D., Liu, H., Fang, Y., Ding, X., and Liang, M. (2012). Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int 82, 1167-1175 .10.1038/ki.2012.241
[56] Yang, L., Humphreys, B.D., and Bonventre, J.V. (2011). Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair. Contrib Nephrol 174, 149-155 .10.1159/000329385
[57] Zamore, P., and Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science 309, 1519-1524 .10.1126/science.1111444
[58] Zhang, H., Guo, Y., Shang, C., Song, Y., and Wu, B. (2012). miR-21downregulated TCF21 to inhibit KISS1 in renal cancer.Urology 80, 1298-1302 .10.1016/j.urology.2012.08.013
[59] Zhong, X., Chung, A.C.K., Chen, H.Y., Dong, Y., Meng, X.M., Li, R., Yang, W., Hou, F.F., and Lan, H.Y. (2013a). miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes.Diabetologia 56, 663-674 .10.1007/s00125-012-2804-x
[60] Zhong, X., Chung, A.C.K., Chen, H.Y., Dong, Y., Meng, X.M., Li, R., Yang, W., Hou, F.F., and Lan, H.Y. (2013b). miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663-674 .10.1007/s00125-012-2804-x
AI Summary AI Mindmap
PDF(291 KB)

Accesses

Citations

Detail

Sections
Recommended

/