Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system

Guodong Luan1,2, Zhen Cai1(), Fuyu Gong1,2, Hongjun Dong1, Zhao Lin1,2, Yanping Zhang1, Yin Li1()

PDF(574 KB)
PDF(574 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (11) : 854-862. DOI: 10.1007/s13238-013-3079-9
RESEARCH ARTICLE

Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system

  • Guodong Luan1,2, Zhen Cai1(), Fuyu Gong1,2, Hongjun Dong1, Zhao Lin1,2, Yanping Zhang1, Yin Li1()
Author information +
History +

Abstract

Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution. However, there have not been any similar systems developed for Clostridium, an important bacterial genus. Here we report a novel two-step strategy for developing controllable hypermutable cells of Clostridium acetobutylicum, an important and representative industrial strain. Firstly, the mutS/L operon essential for methyldirected mismatch repair (MMR) activity was inactivated from the genome of C. acetobutylicum to generate hypermutable cells with over 250-fold increased mutation rates. Secondly, a proofreading control system carrying an inducibly expressed mutS/L operon was constructed. The hypermutable cells and the proofreading control system were integrated to form a controllable hypermutable system SMBMutC, of which the mutation rates can be regulated by the concentration of anhydrotetracycline (aTc) . Duplication of the miniPthl-tetR module of the proofreading control system further significantly expanded the regulatory space of the mutation rates, demonstrating hypermutable Clostridium cells with controllable mutation rates are generated. The developed C. acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress, indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges.

Keywords

Clostridium acetobutylicum / mutation rates / hypermutable cells / artificial control

Cite this article

Download citation ▾
Guodong Luan, Zhen Cai, Fuyu Gong, Hongjun Dong, Zhao Lin, Yanping Zhang, Yin Li. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Prot Cell, 2013, 4(11): 854‒862 https://doi.org/10.1007/s13238-013-3079-9

References

[1] Abe, H., Fujita, Y., Takaoka, Y., Kurita, E., Yano, S., Tanaka, N., and Nakayama, K. (2009). Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase delta. J Biosci Bioeng 108, 199-204 .10.1016/j.jbiosc.2009.03.019
[2] Andreesen, J.B., H.; Gottschalk, G. (1989). Introduction to the physiology and biochemistry of the genus Clostridium. Clostridia , 36.10.1007/978-1-4757-9718-3_2
[3] Bao, G., Wang, R., Zhu, Y., Dong, H., Mao, S., Zhang, Y., Chen, Z., Li, Y., and Ma, Y. (2011). Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol 193, 5007-5008 .10.1128/JB.05596-11
[4] Bartlett, J.G. (2006). Narrative review: The new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 145, 758-764 .10.7326/0003-4819-145-10-200611210-00008
[5] Conrad, T.M., Joyce, A.R., Applebee, M.K., Barrett, C.L., Xie, B., Gao, Y., and Palsson, B.O. (2009). Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals fl exible selection of adaptive mutations. Genome Biol 10.10.1186/gb-2009-10-10-r118
[6] Dong, H., Zhang, Y., Dai, Z., and Li, Y. (2010). Engineering Clostridium strain to accept unmethylated DNA. PLoS One 5, e9038.10.1371/journal.pone.0009038
[7] Dong, H.J., Tao, W.W., Zhang, Y.P., and Li, Y. (2012). Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering. Metab Eng 14, 59-67 .10.1016/j.ymben.2011.10.004
[8] Echols, H., and Goodman, M.F. (1991). Fidelity mechanisms in DNA replication. Annu Rev Biochem 60, 477-511 .10.1146/annurev.bi.60.070191.002401
[9] Emlyn-Jones, D., Price, G.D., and Andrews, T.J. (2003). Nitrogenregulated hypermutator strain of Synechococcus sp. for use in in vivo artificial evolution. Appl Environ Microbiol 69, 6427-6433 .10.1128/AEM.69.11.6427-6433.2003
[10] Endo, A., Sasaki, M., Maruyama, A., and Kurusu, Y. (2006). Temperature adaptation of Bacillus subtilis by chromosomal groEL replacement. Biosci Biotechnol Biochem 70, 2357-2362 .10.1271/bbb.50689
[11] Gentile, C.F., Yu, S.C., Serrano, S.A., Gerrish, P.J., and Sniegowski, P.D. (2011). Competition between high- and higher-mutating strains of Escherichia coli. Biol Lett 7, 422-424 .10.1098/rsbl.2010.1036
[12] Greener, A., Callahan, M., and Jerpseth, B. (1997). An efficient random mutagenesis technique using an E. coli mutator strain. Mol Biotechnol 7, 189-195 .10.1007/BF02761755
[13] Hastings, P.J., Bull, H.J., Klump, J.R., and Rosenberg, S.M. (2000). Adaptive amplification: An inducible chromosomal instability mechanism. Cell 103, 723-731 .10.1016/S0092-8674(00)00176-8
[14] Hermann, M., Fayolle, F., Marchal, R., Podvin, L., Sebald, M., and Vandecasteele, J.P. (1985). Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50, 1238-1243 .
[15] Hirsch, A., and Grinsted, E. (1954). Methods for the growth and enumeration of anaerobic spore-formers from cheese, with observations on the effect of nisin. J Dairy Res 21, 101-110 .10.1017/S0022029900007196
[16] Horst, J.P., Wu, T.H., and Marinus, M.G. (1999). Escherichia coli mutator genes. Trends Microbiol 7, 29-36 .10.1016/S0966-842X(98)01424-3
[17] Ishii, K., Matsuda, H., Iwasa, Y., and Sasaki, A. (1989). Evolutionarily stable mutation rate in a periodically changing environment. Genetics 121, 163-174 .
[18] Jones, D.T., and Woods, D.R. (1986). Acetone-butanol fermentation revisited. Microbiol Rev 50, 484-524 .
[19] Kennedy, C.L., Krejany, E.O., Young, L.F., O’Connor, J.R., Awad, M.M., Boyd, R.L., Emmins, J.J., Lyras, D., and Rood, J.I. (2005). The alpha-toxin of Clostridium septicum is essential for virulence. Mol Microbiol 57, 1357-1366 .10.1111/j.1365-2958.2005.04774.x
[20] Kimura, M. (1967). On the evolutionary adjustment of spontaneous mutation rates. Genet Res 9, 23-34 .10.1017/S0016672300010284
[21] Kondrashov, A.S. (1995). Modifiers of mutation-selection balance: general approach and the evolution of mutation rates. Genet Res 66, 53-69 .10.1017/S001667230003439X
[22] Kunkel, T.A. (2004). DNA replication fidelity. J Biol Chem 279, 16895-16898 .10.1074/jbc.R400006200
[23] Kunkel, T.A., and Bebenek, R. (2000). DNA replication fidelity. Annu Rev Biochem 69, 497-529 .10.1146/annurev.biochem.69.1.497
[24] LeClerc, J.E., Li, B., Payne, W.L., and Cebula, T.A. (1996). High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208-1211 .10.1126/science.274.5290.1208
[25] Lewis, T.A., Goszczynski, S., Crawford, R.L., Korus, R.A., and Admassu, W. (1996). Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62, 4669-4674 .
[26] Liu, X.B., Gu, Q.Y., and Yu, X.B. (2013). Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Bioresour Technol 130, 638-643 .10.1016/j.biortech.2012.12.121
[27] Loh, E., Salk, J.J., and Loeb, L.A. (2010). Optimization of DNA polymerase mutation rates during bacterial evolution. Proc Natl Acad Sci U S A 107, 1154-1159 .10.1073/pnas.0912451107
[28] Matic, I., Taddei, F., and Radman, M. (2004). Survival versus maintenance of genetic stability: a confl ict of priorities during stress. Res Microbiol 155, 337-341 .10.1016/j.resmic.2004.01.010
[29] Mermelstein, L.D., Welker, N.E., Bennett, G.N., and Papoutsakis, E.T. (1992). Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat Biotechnol 10, 190-195 .10.1038/nbt0292-190
[30] Modrich, P., and Lahue, R. (1996). Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65, 101-133 .10.1146/annurev.bi.65.070196.000533
[31] Morrison, A., Johnson, A.L., Johnston, L.H., and Sugino, A. (1993). Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12, 1467-1473 .
[32] Perron, G.G., Hall, A.R., and Buckling, A. (2010). Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Am Nat 176, 303-311 .10.1086/655217
[33] Perutka, J., Wang, W., Goerlitz, D., and Lambowitz, A.M. (2004). Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336, 421-439 .10.1016/j.jmb.2003.12.009
[34] Rehner, S.A., and Samuels, G.J. (1994). Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98, 625-634 .10.1016/S0953-7562(09)80409-7
[35] Sakaguchi, G. (1982). Clostridium-Botulinum toxins. Pharmacol Therapeut 19, 165-194 .10.1016/0163-7258(82)90061-4
[36] Sambrook, J., and Russell, D.W.Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press , New York, 2001.
[37] Sasaki, M., Yonemura, Y., and Kurusu, Y. (2000). Genetic analysis of Bacillus subtilis mutator genes. J Gen Appl Microbiol 46, 183-187 .10.2323/jgam.46.183
[38] Selifonova, O., Valle, F., and Schellenberger, V. (2001). Rapid evolution of novel traits in microorganisms. Appl Environ Microbiol 67, 3645-3649 .10.1128/AEM.67.8.3645-3649.2001
[39] Shao, L., Hu, S., Yang, Y., Gu, Y., Chen, J., Yang, Y., Jiang, W., and Yang, S. (2007). Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17, 963-965 .10.1038/cr.2007.91
[40] Shaver, A.C., and Sniegowski, P.D. (2003). Spontaneously arising mutL mutators in evolving Escherichia coli populations are the result of changes in repeat length. J Bacteriol 185, 6076-6082 .10.1128/JB.185.20.6076-6082.2003
[41] Shimoda, C., Itadani, A., Sugino, A., and Furusawa, M. (2006). Isolation of thermotolerant mutants by using proofreading-deficient DNA polymerase delta as an effective mutator in Saccharomyces cerevisiae. Genes Genet Syst 81, 391-397 .10.1266/ggs.81.391
[42] Sniegowski, P.D., Gerrish, P.J., and Lenski, R.E. (1997). Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703-705 .10.1038/42701
[43] Stephanopoulos, G. (2002). Metabolic engineering by genome shuffling- Two reports on whole-genome shuffling demonstrate the application of combinatorial methods for phenotypic improvement in bacteria. Nat Biotechnol 20, 666-668 .10.1038/nbt0702-666
[44] Taddei, F., Radman, M., MaynardSmith, J., Toupance, B., Gouyon, P.H., and Godelle, B. (1997). Role of mutator alleles in adaptive evolution. Nature 387, 700-702 .10.1038/42696
[45] Tanabe, K., Kondo, T., Onodera, Y., and Furusawa, M. (1999). A conspicuous adaptability to antibiotics in the Escherichia coli mutator strain, dnaQ49. Fems Microbiol Lett 176, 191-196 .10.1111/j.1574-6968.1999.tb13661.x
[46] Tenaillon, O., Toupance, B., Le Nagard, H., Taddei, F., and Godelle, B. (1999). Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152, 485-493 .
[47] Yang, H.J., Wolff, E., Kim, M., Diep, A., and Miller, J.H. (2004). Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol Microbiol 53, 283-295 .10.1111/j.1365-2958.2004.04125.x
AI Summary AI Mindmap
PDF(574 KB)

Accesses

Citations

Detail

Sections
Recommended

/