Toward pluripotency by reprogramming: mechanisms and application

Tao Wang1,2, Stephen T. Warren1, Peng Jin1()

PDF(402 KB)
PDF(402 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (11) : 820-832. DOI: 10.1007/s13238-013-3074-1
REVIEW
REVIEW

Toward pluripotency by reprogramming: mechanisms and application

  • Tao Wang1,2, Stephen T. Warren1, Peng Jin1()
Author information +
History +

Abstract

The somatic epigenome can be reprogrammed to a pluripotent state by a combination of transcription factors. Altering cell fate involves transcription factors cooperation, epigenetic reconfiguration, such as DNA methylation and histone modification, posttranscriptional regulation by microRNAs, and so on. Nevertheless, such reprogramming is inefficient. Evidence suggests that during the early stage of reprogramming, the process is stochastic, but by the late stage, it is deterministic. In addition to conventional reprogramming methods, dozens of small molecules have been identifi ed that can functionally replace reprogramming factors and significantly improve induced pluripotent stem cell (iPSC) reprogramming. Indeed, iPS cells have been created recently using chemical compounds only. iPSCs are thought to display subtle genetic and epigenetic variability; this variability is not random, but occurs at hotspots across the genome. Here we discuss the progress and current perspectives in the field. Research into the reprogramming process today will pave the way for great advances in regenerative medicine in the future.

Keywords

epigenetic reprogramming / induced pluripotent stem cells / embryonic stem cells / disease modeling

Cite this article

Download citation ▾
Tao Wang, Stephen T. Warren, Peng Jin. Toward pluripotency by reprogramming: mechanisms and application. Prot Cell, 2013, 4(11): 820‒832 https://doi.org/10.1007/s13238-013-3074-1

References

[1] Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., . (2008). Ef-fi cient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284 .10.1038/nbt.1503
[2] Anokye-Danso,F., Trivedi, C.M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P.J., Epstein, J.A., . (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376-388 .10.1016/j.stem.2011.03.001
[3] Apostolou, E., Ferrari, F., Walsh, R.M., Bar-Nur,O., Stadtfeld, M., Cheloufi , S., Stuart, H.T., Polo, J.M., Ohsumi, T.K., Borowsky, M.L., . (2013). Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699-712 .10.1016/j.stem.2013.04.013
[4] Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., Sugiura, M., Ideno, H., Shimada, A., Nifuji, A., . (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494, 100-104 .10.1038/nature11807
[5] Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 .10.1016/j.cell.2009.01.002
[6] Bhutani, N., Brady, J.J., Damian, M., Sacco, A., Corbel, S.Y., and Blau, H.M. (2010). Reprogramming towards pluripotency requires AIDdependent DNA demethylation. Nature 463, 1042-1047 .10.1038/nature08752
[7] Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., Ziller, M., Croft, G.F., Amoroso, M.W., Oakley, D.H., . (2011). Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439-452 .10.1016/j.cell.2010.12.032
[8] Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760-1764 .10.1126/science.1147939
[9] Brennand, K.J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., Li, Y., Mu, Y., Chen, G., Yu, D., . (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225 .10.1038/nature09915
[10] Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K., Klemm, S.L., van Oudenaarden,A., and Jaenisch, R. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209-1222 .10.1016/j.cell.2012.08.023
[11] Cao, N., Liang, H., Huang, J., Wang, J., Chen, Y., Chen, Z., and Yang, H.T. (2013). Highly effi cient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defi ned conditions. Cell Res 23, 1119-1132 .10.1038/cr.2013.102
[12] Carey, B.W., Markoulaki, S., Hanna, J.H., Faddah, D.A., Buganim, Y., Kim, J., Ganz, K., Steine, E.J., Cassady, J.P., Creyghton, M.P., . (2011). Reprogramming factor stoichiometry infl uences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9, 588-598 .10.1016/j.stem.2011.11.003
[13] Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011).Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82.10.1093/nar/gkr739
[14] Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L. (2009). Highly effi cient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275-280 .10.1038/nbt.1529
[15] Chen, J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., Liang, H., Chen, Y., Wu, Y., Guo, L., . (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 45, 34-42 .10.1038/ng.2491
[16] Cherry, A.B., and Daley, G.Q. (2013). Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med 64, 277-290 .10.1146/annurev-med-050311-163324
[17] Cheung, C., Bernardo, A.S., Trotter, M.W., Pedersen, R.A., and Sinha, S. (2012). Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30, 165-173 .10.1038/nbt.2107
[18] Chin, M.H., Mason, M.J., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., . (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111-123 .10.1016/j.stem.2009.06.008
[19] Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffi ni, L.A., . (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 .10.1126/science.1231143
[20] Costa, Y., Ding, J., Theunissen, T.W., Faiola, F., Hore, T.A., Shliaha, P.V., Fidalgo, M., Saunders, A., Lawrence, M., Dietmann, S., . (2013). NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370-374 .10.1038/nature11925
[21] Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369-1373 .10.1126/science.1116447
[22] Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E.M., Antosiewicz-Bourget, J., Egli, D., Maherali, N., Park, I.H., Yu, J., . (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27, 353-360 .10.1038/nbt.1530
[23] Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., . (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218-1221 .10.1126/science.1158799
[24] Doege, C.A., Inoue, K., Yamashita, T., Rhee, D.B., Travis, S., Fujita, R., Guarnieri, P., Bhagat, G., Vanti, W.B., Shih, A., . (2012). Earlystage epigenetic modifi cation during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652-655 .10.1038/nature11333
[25] Ebert, A.D., Yu, J., Rose, F.F., Jr., Mattis, V.B., Lorson, C.L., Thomson, J.A., and Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277-280 .10.1038/nature07677
[26] Engle, S.J., and Puppala, D. (2013). Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12, 669-677 .10.1016/j.stem.2013.05.011
[27] Espuny-Camacho, I., Michelsen, K.A., Gall, D., Linaro, D., Hasche, A., Bonnefont, J., Bali, C., Orduz, D., Bilheu, A., Herpoel, A., . (2013). Pyramidal neurons derived from human pluripotent stem cells integrate effi ciently into mouse brain circuits in vivo. Neuron 77, 440-456 .10.1016/j.neuron.2012.12.011
[28] Feng, B., Jiang, J., Kraus, P., Ng, J.H., Heng, J.C., Chan, Y.S., Yaw, L.P., Zhang, W., Loh, Y.H., Han, J., . (2009). Reprogramming of fi broblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11, 197-203 .10.1038/ncb1827
[29] Frum, T., Halbisen, M.A., Wang, C., Amiri, H., Robson, P., and Ralston, A. (2013). Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell 25, 610-622 .10.1016/j.devcel.2013.05.004
[30] Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 .10.1038/nbt.2623
[31] Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009). Effi cient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome.Proc Jpn Acad Ser B Phys Biol Sci 85, 348-362 .10.2183/pjab.85.348
[32] Gaj, T., Gersbach, C.A., and Barbas, C.F., 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405 .10.1016/j.tibtech.2013.04.004
[33] Gao, Y., Chen, J., Li, K., Wu, T., Huang, B., Liu, W., Kou, X., Zhang, Y., Huang, H., Jiang, Y., . (2013). Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453-469 .10.1016/j.stem.2013.02.005
[34] Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodriguez-Piza, I., Vassena, R., Raya, A., Boue, S., Barrero, M.J., Corbella, B.A., . (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5, 353-357 .10.1016/j.stem.2009.09.008
[35] Goldberg, A.D., Allis, C.D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635-638 .10.1016/j.cell.2007.02.006
[36] Golipour, A., David, L., Liu, Y., Jayakumaran, G., Hirsch, C.L., Trcka, D., and Wrana, J.L. (2012). A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769-782 .10.1016/j.stem.2012.11.008
[37] Gore, A., Li, Z., Fung, H.L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., . (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63-67 .10.1038/nature09805
[38] Guha, P., Morgan, J.W., Mostoslavsky, G., Rodrigues, N.P., and Boyd, A.S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12, 407-412 .10.1016/j.stem.2013.01.006
[39] Gurdon, J.B., Elsdale, T.R., and Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64-65 .10.1038/182064a0
[40] Haase, A., Olmer, R., Schwanke, K., Wunderlich, S., Merkert, S., Hess, C., Zweigerdt, R., Gruh, I., Meyer, J., Wagner, S., . (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5, 434-441 .10.1016/j.stem.2009.08.021
[41] Han, J., Yuan, P., Yang, H., Zhang, J., Soh, B.S., Li, P., Lim, S.L., Cao, S., Tay, J., Orlov, Y.L., . (2010). Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463, 1096-1100 .10.1038/nature08735
[42] Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595-601 .10.1038/nature08592
[43] Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P.J., . (2010). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107, 15921-15926 .10.1073/pnas.1010209107
[44] He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., . (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303-1307 .10.1126/science.1210944
[45] Hochedlinger, K., and Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035-1038 .10.1038/nature718
[46] Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., . (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654 .10.1126/science.1239278
[47] Hu, S., Wilson, K.D., Ghosh, Z., Han, L., Wang, Y., Lan, F., Ransohoff, K.J., Burridge, P., and Wu, J.C. (2013). MicroRNA-302 increases reprogramming effi ciency via repression of NR2F2. Stem Cells 31, 259-268 .10.1002/stem.1278
[48] Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26, 795-797 .10.1038/nbt1418
[49] Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269-1275 .10.1038/nbt.1502
[50] Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., . (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58-62 .10.1038/nature09871
[51] Israel, M.A., Yuan, S.H., Bardy, C., Reyna, S.M., Mu, Y., Herrera, C., Hefferan, M.P., Van Gorp, S., Nazor, K.L., Boscolo, F.S., . (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature482, 216-220 .
[52] Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303 .10.1126/science.1210597
[53] Iyer, L.M., Tahiliani, M., Rao, A., and Aravind, L. (2009). Prediction of novel families of enzymes involved in oxidative and other complex modifi cations of bases in nucleic acids. Cell Cycle 8, 1698-1710 .10.4161/cc.8.11.8580
[54] Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013). RNA-programmed genome editing in human cells. eLife 2, e00471.10.7554/eLife.00471
[55] Judson, R.L., Babiarz, J.E., Venere, M., and Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27, 459-461 .10.1038/nbt.1535
[56] Karwacki-Neisius, V., Goke, J., Osorno, R., Halbritter, F., Ng, J.H., Weisse, A.Y., Wong, F.C., Gagliardi, A., Mullin, N.P., Festuccia, N., . (2013). Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell 12, 531-545 .10.1016/j.stem.2013.04.023
[57] Kato, Y., Kaneda, M., Hata, K., Kumaki, K., Hisano, M., Kohara, Y., Okano, M., Li, E., Nozaki, M., and Sasaki, H. (2007). Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16, 2272-2280 .10.1093/hmg/ddm179
[58] Kattman, S.J., Witty, A.D., Gagliardi, M., Dubois, N.C., Niapour, M., Hotta, A., Ellis, J., and Keller, G. (2011). Stage-specifi c optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228-240 .10.1016/j.stem.2010.12.008
[59] Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S.H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049-1061 .10.1016/j.cell.2008.02.039
[60] Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., Huo, H., Loh, Y.H., Aryee, M.J., Lensch, M.W., . (2011). Donor cell type can infl uence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 29, 1117-1119 .10.1038/nbt.2052
[61] Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y., Imamura, K., Egawa, N., Yahata, N., Okita, K., . (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12, 487-496 .10.1016/j.stem.2013.01.009
[62] Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., . (2011). Dopamine neurons derived from human ES cells effi ciently engraft in animal models of Parkinson’s disease. Nature 480, 547-551 .
[63] Kumar, R., DiMenna, L., Schrode, N., Liu, T.C., Franck, P., Munoz-Descalzo, S., Hadjantonakis, A.K., Zarrin, A.A., Chaudhuri, J., Elemento, O., . (2013). AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 500, 89-92 .10.1038/nature12299
[64] Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T., Low, H.M., Kin Sung, K.W., Rigoutsos, I., Loring, J., . (2010). Dynamic changes in the human methylome during differentiation. Genome Res 20, 320-331 .10.1101/gr.101907.109
[65] Leonhardt, H., Page, A.W., Weier, H.U., and Bestor, T.H. (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865-873 .10.1016/0092-8674(92)90561-P
[66] Li, L.B., Chang, K.H., Wang, P.R., Hirata, R.K., Papayannopoulou, T., and Russell, D.W. (2012). Trisomy correction in Down syndrome induced pluripotent stem cells.Cell Stem Cell 11, 615-619 .10.1016/j.stem.2012.08.004
[67] Li, M., Suzuki, K., Qu, J., Saini, P., Dubova, I., Yi, F., Lee, J., Sancho-Martinez, I., Liu, G.H., and Izpisua Belmonte, J.C. (2011). Effi cient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 21, 1740-1744 .10.1038/cr.2011.186
[68] Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H.R., Hayek, A., and Ding, S. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27, 2992-3000 .
[69] Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L.B., Azarin, S.M., Raval, K.K., Zhang, J., Kamp, T.J., and Palecek, S.P. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109, E1848-1857 .10.1073/pnas.1200250109
[70] Liang, G., and Zhang, Y. (2013). Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13, 149-159 .10.1016/j.stem.2013.07.001
[71] Lin, C.Y., Loven, J., Rahl, P.B., Paranal, R.M., Burge, C.B., Bradner, J.E., Lee, T.I., and Young, R.A. (2012). Transcriptional amplifi cation in tumor cells with elevated c-Myc. Cell 151, 56-67 .10.1016/j.cell.2012.08.026
[72] Lin, S.L., Chang, D.C., Lin, C.H., Ying, S.Y., Leu, D., and Wu, D.T. (2011). Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39, 1054-1065 .10.1093/nar/gkq850
[73] Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., . (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322 .10.1038/nature08514
[74] Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., . (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68-73 .10.1038/nature09798
[75] Liu, G.H., Qu, J., Suzuki, K., Nivet, E., Li, M., Montserrat, N., Yi, F., Xu, X., Ruiz, S., Zhang, W., . (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491, 603-607 .10.1038/nature11557
[76] Liu, G.H., Suzuki, K., Qu, J., Sancho-Martinez, I., Yi, F., Li, M., Kumar, S., Nivet, E., Kim, J., Soligalla, R.D., . (2011). Targeted gene correction of laminopathy-associated LMNA mutations in patientspecifi c iPSCs. Cell Stem Cell 8, 688-694 .10.1016/j.stem.2011.04.019
[77] Liu, X., Sun, H., Qi, J., Wang, L., He, S., Liu, J., Feng, C., Chen, C., Li, W., Guo, Y., . (2013). Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 15, 829-838 .10.1038/ncb2765
[78] Loh, Y.H., Agarwal, S., Park, I.H., Urbach, A., Huo, H., Heffner, G.C., Kim, K., Miller, J.D., Ng, K., and Daley, G.Q. (2009). Generation of induced pluripotent stem cells from human blood.Blood 113, 5476-5479 .10.1182/blood-2009-02-204800
[79] Lu, D., Davis, M.P., Abreu-Goodger, C., Wang, W., Campos, L.S., Siede, J., Vigorito, E., Skarnes, W.C., Dunham, I., Enright, A.J., . (2012). MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fi broblast cells to iPSCs. PLoS One 7, e40938.10.1371/journal.pone.0040938
[80] Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N., and Yamanaka, S. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474, 225-229 .10.1038/nature10106
[81] Maiti, A., and Drohat, A.C. (2011). Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286, 35334-35338 .10.1074/jbc.C111.284620
[82] Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826 .10.1126/science.1232033
[83] Maroof, A.M., Keros, S., Tyson, J.A., Ying, S.W., Ganat, Y.M., Merkle, F.T., Liu, B., Goulburn, A., Stanley, E.G., Elefanty, A.G., . (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559-572 .10.1016/j.stem.2013.04.008
[84] Meng, X., Noyes, M.B., Zhu, L.J., Lawson, N.D., and Wolfe, S.A. (2008). Targeted gene inactivation in zebrafish using engineered zincfi nger nucleases. Nat Biotechnol 26, 695-701 .10.1038/nbt1398
[85] Merkle, F.T., and Eggan, K. (2013). Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12, 656-668 .10.1016/j.stem.2013.05.016
[86] Mikkelsen, T.S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B.E., Jaenisch, R., Lander, E.S., and Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49-55 .10.1038/nature07056
[87] Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., . (2011). A TALE nuclease architecture for effi cient genome editing. Nat Biotechnol 29, 143-148 .10.1038/nbt.1755
[88] Minami, I., Yamada, K., Otsuji, T.G., Yamamoto, T., Shen, Y., Otsuka, S., Kadota, S., Morone, N., Barve, M., Asai, Y., . ( 2012). A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defi ned, cytokine- and xeno-free conditions. Cell Rep 2, 1448-1460 .10.1016/j.celrep.2012.09.015
[89] Mitne-Neto, M., Machado-Costa, M., Marchetto, M.C., Bengtson, M.H., Joazeiro, C.A., Tsuda, H., Bellen, H.J., Silva, H.C., Oliveira, A.S., Lazar, M., . (2011). Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20, 3642-3652 .10.1093/hmg/ddr284
[90] Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., . (2009). Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27, 743-745 .10.1038/nbt.1554
[91] Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D.L., Kano, Y., Nishikawa, S., Tanemura, M., Mimori, K., Tanaka, F., . (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633-638 .10.1016/j.stem.2011.05.001
[92] Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., Garitaonandia, I., Muller, F.J., Wang, Y.C., Boscolo, F.S., . (2012). Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10, 620-634 .10.1016/j.stem.2012.02.013
[93] Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 .10.1016/S0092-8674(00)81656-6
[94] Onder, T.T., and Daley, G.Q. (2012). New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22, 500-508 .10.1016/j.gde.2012.05.005
[95] Papapetrou, E.P., Tomishima, M.J., Chambers, S.M., Mica, Y., Reed, E., Menon, J., Tabar, V., Mo, Q., Studer, L., and Sadelain, M. (2009). Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for effi cient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 106, 12759-12764 .10.1073/pnas.0904825106
[96] Pardo, M., Lang, B., Yu, L., Prosser, H., Bradley, A., Babu, M.M., and Choudhary, J. (2010). An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382-395 .10.1016/j.stem.2010.03.004
[97] Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specifi c induced pluripotent stem cells. Cell 134, 877-886 .10.1016/j.cell.2008.07.041
[98] Pawlak, M., and Jaenisch, R. (2011). De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev 25, 1035-1040 .10.1101/gad.2039011
[99] Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., . (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-fi nger nucleases. Nat Biotechnol 26, 808-816 .10.1038/nbt1410
[100] Pijnappel, W.W., Esch, D., Baltissen, M.P., Wu, G., Mischerikow, N., Bergsma, A.J., van der Wal, E., Han, D.W., Bruch, H., Moritz, S., . (2013). A central role for TFIID in the pluripotent transcription circuitry. Nature 495, 516-519 .10.1038/nature11970
[101] Polo, J.M., Anderssen, E., Walsh, R.M., Schwarz, B.A., Nefzger, C.M., Lim, S.M., Borkent, M., Apostolou, E., Alaei, S., Cloutier, J., . (2012). A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617-1632 .10.1016/j.cell.2012.11.039
[102] Popp, C., Dean, W., Feng, S., Cokus, S.J., Andrews, S., Pellegrini, M., Jacobsen, S.E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID defi ciency. Nature 463, 1101-1105 .10.1038/nature08829
[103] Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A., and Cairns, B.R. (2008). DNA demethylation in zebrafi sh involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201-1212 .10.1016/j.cell.2008.11.042
[104] Revazova, E.S., Turovets, N.A., Kochetkova, O.D., Kindarova, L.B., Kuzmichev, L.N., Janus, J.D., and Pryzhkova, M.V. (2007). Patientspecifi c stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9, 432-449 .10.1089/clo.2007.0033
[105] Ruiz, S., Diep, D., Gore, A., Panopoulos, A.D., Montserrat, N., Plongthongkum, N., Kumar, S., Fung, H.L., Giorgetti, A., Bilic, J., . (2012). Identifi cation of a specifi c reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A 109, 16196-16201 .10.1073/pnas.1202352109
[106] Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H.K., Beyer, T.A., Datti, A., Woltjen, K., Nagy, A., and Wrana, J.L. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64-77 .10.1016/j.stem.2010.04.015
[107] Schiesser, S., Hackner, B., Pfaffeneder, T., Muller, M., Hagemeier, C., Truss, M., and Carell, T. (2012).Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl 51, 6516-6520 .10.1002/anie.201202583
[108] Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., Kusumoto, D., Nakata, H., Tohyama, S., Hashimoto, H., Kodaira, M., . (2010). Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7, 11-14 .10.1016/j.stem.2010.06.003
[109] Sharif, J., Muto, M., Takebayashi, S., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., . (2007). The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908-912 .10.1038/nature06397
[110] Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R., and Ding, S. (2008a). Induction of pluripotent stem cells from mouse embryonic fi broblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568-574 .10.1016/j.stem.2008.10.004
[111] Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., and Ding, S. (2008b). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525-528 .10.1016/j.stem.2008.05.011
[112] Shi, Y., Kirwan, P., Smith, J., Robinson, H.P., and Livesey, F.J. (2012). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15, 477-486 .10.1038/nn.3041
[113] Shu, J., Wu, C., Wu, Y., Li, Z., Shao, S., Zhao, W., Tang, X., Yang, H., Shen, L., Zuo, X., . (2013). Induction of pluripotency in mouse somatic cells with lineage specifi ers. Cell 153, 963-975 .10.1016/j.cell.2013.05.001
[114] Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development. Nat Rev Genet 14, 204-220 .10.1038/nrg3354
[115] Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., . (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964-977 .10.1016/j.cell.2009.02.013
[116] Soufi , A., Donahue, G., and Zaret, K.S. (2012). Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994-1004 .10.1016/j.cell.2012.09.045
[117] Sridharan, R., Tchieu, J., Mason, M.J., Yachechko, R., Kuoy, E., Horvath, S., Zhou, Q., and Plath, K. (2009). Role of the murine reprogramming factors in the induction of pluripotency.Cell 136, 364-377 .10.1016/j.cell.2009.01.001
[118] Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., and Hochedlinger, K. (2010a). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175-181 .10.1038/nature09017
[119] Stadtfeld, M., Maherali, N., Borkent, M., and Hochedlinger, K. (2010b). A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 7, 53-55 .10.1038/nmeth.1409
[120] Staerk, J., Dawlaty, M.M., Gao, Q., Maetzel, D., Hanna, J., Sommer, C.A., Mostoslavsky, G., and Jaenisch, R. (2010). Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7, 20-24 .10.1016/j.stem.2010.06.002
[121] Sun, N., Panetta, N.J., Gupta, D.M., Wilson, K.D., Lee, A., Jia, F., Hu, S., Cherry, A.M., Robbins, R.C., Longaker, M.T., . (2009). Feederfree derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A 106, 15720-15725 .10.1073/pnas.0908450106
[122] Suzuki, K., Mitsui, K., Aizawa, E., Hasegawa, K., Kawase, E., Yamagishi, T., Shimizu, Y., Suemori, H., Nakatsuji, N., and Mitani, K. (2008). Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci U S A 105,13781-13786 .10.1073/pnas.0806976105
[123] Tachibana, M., Amato, P., Sparman, M., Gutierrez, N.M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H.S., Sritanaudomchai, H., . (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228-1238 .10.1016/j.cell.2013.05.006
[124] Tada, M., Tada, T., Lefebvre, L., Barton, S.C., and Surani, M.A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16, 6510-6520 .10.1093/emboj/16.21.6510
[125] Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11, 1553-1558 .10.1016/S0960-9822(01)00459-6
[126] Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L., . (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 .10.1126/science.1170116
[127] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fi broblasts by defi ned factors. Cell 131, 861-872 .10.1016/j.cell.2007.11.019
[128] Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fi broblast cultures by defi ned factors. Cell 126, 663-676 .10.1016/j.cell.2006.07.024
[129] Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A., and Ramanathan, S. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875-889 .10.1016/j.cell.2011.05.017
[130] Tiemann, U., Sgodda, M., Warlich, E., Ballmaier, M., Scholer, H.R., Schambach, A., and Cantz, T. (2011). Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry A 79, 426-435 .10.1002/cyto.a.21072
[131] Waddington, C.H. (1957). The strategy of the genes; a discussion of some aspects of theoretical biology(London,, Allen & Unwin ).
[132] Wang, T., Wu, H., Li, Y., Szulwach, K.E., Lin, L., Li, X., Chen, I.P., Goldlust, I.S., Chamberlain, S.J., Dodd, A., . (2013). Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifi cations during reprogramming to pluripotency. Nat Cell Biol 15, 700-711 .10.1038/ncb2748
[133] Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J.E., Baehner, L., and Blelloch, R. (2008). Embryonic stem cell-specifi c microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40, 1478-1483 .10.1038/ng.250
[134] Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380-385 .10.1038/ng1969
[135] Wang, Z., Oron, E., Nelson, B., Razis, S., and Ivanova, N. (2012). Distinct lineage specifi cation roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10, 440-454 .10.1016/j.stem.2012.02.016
[136] Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., . (2010). Highly effi cient reprogramming to pluripotency and directed differentiation of human cells with synthetic modifi ed mRNA. Cell Stem Cell 7, 618-630 .10.1016/j.stem.2010.08.012
[137] Wei, Z., Gao, F., Kim, S., Yang, H., Lyu, J., An, W., Wang, K., and Lu, W. (2013). Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13, 36-47 .10.1016/j.stem.2013.05.010
[138] Wernig, M., Lengner, C.J., Hanna, J., Lodato, M.A., Steine, E., Foreman, R., Staerk, J., Markoulaki, S., and Jaenisch, R. (2008). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26, 916-924 .10.1038/nbt1483
[139] Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813 .10.1038/385810a0
[140] Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H., and Suzuki, N. (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20, 4530-4539 .10.1093/hmg/ddr394
[141] Yang, C.S., Li, Z., and Rana, T.M. (2011). microRNAs modulate iPS cell generation. RNA 17, 1451-1460 .10.1261/rna.2664111
[142] Yoshioka, N., Gros, E., Li, H.R., Kumar, S., Deacon, D.C., Maron, C., Muotri, A.R., Chi, N.C., Fu, X.D., Yu, B.D., . (2013). Effi cient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 13, 246-254 .10.1016/j.stem.2013.06.001
[143] Yu, D.X., Marchetto, M.C., and Gage, F.H. (2013). Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 12, 678-688 .10.1016/j.stem.2013.05.018
[144] Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, and Thomson, J.A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797-801 .10.1126/science.1172482
[145] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., . (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 .10.1126/science.1151526
[146] Yuan, X., Wan, H., Zhao, X., Zhu, S., Zhou, Q., and Ding, S. (2011). Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fi broblasts. Stem Cells 29, 549-553 .10.1002/stem.594
[147] Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., Liu, P.Q., Paschon, D.E., Miranda, E., Ordonez, A., Hannan, N.R., Rouhani, F.J., . (2011). Targeted gene correction of alpha1-antitrypsin defi-ciency in induced pluripotent stem cells. Nature 478, 391-394 .10.1038/nature10424
[148] Zhang, H., Jiao, W., Sun, L., Fan, J., Chen, M., Wang, H., Xu, X., Shen, A., Li, T., Niu, B., . (2013). Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30-35 .10.1016/j.stem.2013.05.012
[149] Zhao, T., Zhang, Z.N., Rong, Z., and Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature 474, 212-215 .10.1038/nature10135
[150] Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang, C., Hou, P., Song, Z., . (2008). Two supporting factors greatly improve the effi ciency of human iPSC generation. Cell Stem Cell 3, 475-479 .10.1016/j.stem.2008.10.002
AI Summary AI Mindmap
PDF(402 KB)

Accesses

Citations

Detail

Sections
Recommended

/