[1] Baker, M.L., Jiang, W., Rixon, F.J., and Chiu, W. (2005). Common ancestry of herpesviruses and tailed DNA bacteriophages.
J Virol 79, 14967-14970 .
10.1128/JVI.79.23.14967-14970.2005[2] Baldick, C.J., Jr., and Shenk, T. (1996). Proteins associated with purifi ed human cytomegalovirus particles.
J Virol 70, 6097-6105 .
[3] Booy, F.P., Newcomb, W.W., Trus, B.L., Brown, J.C., Baker, T.S., and Steven, A.C. (1991). Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus.
Cell 64, 1007-1015 .
10.1016/0092-8674(91)90324-R[4] Borst, E.M., Mathys, S., Wagner, M., Muranyi, W., and Messerle, M. (2001). Genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth.
J Virol 75, 1450-1458 .
10.1128/JVI.75.3.1450-1458.2001[5] Bowman, B.R., Baker, M.L., Rixon, F.J., Chiu, W., and Quiocho, F.A. (2003). Structure of the herpesvirus major capsid protein.
EMBO J 22, 757-765 .
10.1093/emboj/cdg086[6] Britt, W.J., and Boppana, S. (2004). Human cytomegalovirus virion proteins.
Hum Immunol 65, 395-402 .
10.1016/j.humimm.2004.02.008[7] Buchan, D.W., Ward, S.M., Lobley, A.E., Nugent, T.C., Bryson, K., and Jones, D.T. (2010). Protein annotation and modelling servers at University College London.
Nucleic Acids Res 38, W563-568 .
10.1093/nar/gkq427[8] Butcher, S.J., Aitken, J., Mitchell, J., Gowen, B., and Dargan, D.J. (1998). Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and image reconstruction.
J Struct Biol 124, 70-76 .
10.1006/jsbi.1998.4055[9] Chee, M., Rudolph, S.A., Plachter, B., Barrel, B., and Jahn, G. (1989). Identification of the major capsid protein gene of human cytomegalovirus.
J Virol 63, 1345-1353 .
[10] Chen, D.H., Jiang, H., Lee, M., Liu, F., and Zhou, Z.H. (1999). Threedimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus.
Virology 260 , 10-16 .
10.1006/viro.1999.9791[11] Cole, C., Barber, J.D., and Barton, G.J. (2008). The Jpred 3 secondary structure prediction server.
Nucleic Acids Res 36, W197-201 .
10.1093/nar/gkn238[12] Conway, J.F., Cockrell, S.K., Copeland, A.M., Newcomb, W.W., Brown, J.C., and Homa, F.L. (2010). Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton.
J Mol Biol 397, 575-586 .
10.1016/j.jmb.2010.01.043[13] Deng, B., O’Connor, C.M., Kedes, D.H., and Zhou, Z.H. (2008). Cryoelectron tomography of Kaposi’s sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation.
J Struct Biol 161, 419-427 .
10.1016/j.jsb.2007.10.016[14] Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot.
Acta Crystallogr D Biol Crystallogr 66, 486-501 .
10.1107/S0907444910007493[15] Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Gunasekaran, P., Ceric, G., Forslund, K.,
. (2010). The Pfam protein families database.
Nucleic Acids Res 38, D211-222 .
10.1093/nar/gkp985[16] Gibson, W., Baxter, M.K., and Clopper, K.S. (1996a). Cytomegalovirus “missing” capsid protein identified as heat-aggregable product of human cytomegalovirus UL46.
J Virol 70, 7454-7461 .
[17] Gibson, W., Clopper, K.S., Britt, W.J., and Baxter, M.K. (1996b). Human cytomegalovirus (HCMV) smallest capsid protein identified as product of short open reading frame located between HCMV UL48 and UL49.
J Virol 70, 5680-5683 .
[18] Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.
Electrophoresis 18, 2714-2723 .
10.1002/elps.1150181505[19] Heymann, J.B., Cheng, N., Newcomb, W.W., Trus, B.L., Brown, J.C., and Steven, A.C. (2003). Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy.
Nat Struct Biol 10, 334-341 .
10.1038/nsb922[20] Homa, F.L., Huffman, J.B., Toropova, K., Lopez, H.R., Makhov, A.M., and Conway, J.F. (2013). Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins.
J Mol Biol . (In Press).
10.1016/j.jmb.2013.06.034[21] Huang, E., Perkins, E.M., and Desai, P. (2007). Structural features of the scaffold interaction domain at the N terminus of the major capsid protein (VP5) of herpes simplex virus type 1.
J Virol 81, 9396-9407 .
10.1128/JVI.00986-07[22] Kelley, L.A., and Sternberg, M.J. (2009). Protein structure prediction on the Web: a case study using the Phyre server.
Nat Protoc 4, 363-371 .
10.1038/nprot.2009.2[23] Liang, Y., Ke, E.Y., and Zhou, Z.H. (2002). IMIRS: a high-resolution 3D reconstruction package integrated with a relational image database.
J Struct Biol 137, 292-304 .
10.1016/S1047-8477(02)00014-X[24] Liu, F., and Zhou, Z.H. (2007). Comparative virion structures of human herpesviruses
. In Human Herpesviruses: Biology, Therapy and Immunoprophylaxis . Arvin, A., Campadelli-Fiume, G., Moore, P., Mocarski, E., Roizman, B., Whitley, R., and Yamanishi, K., eds. (
Cambridge, UK, Cambridge University Press), pp . 27-43 .
[25] Liu, H., Cheng, L., Zeng, S., Cai, C., Zhou, Z.H., and Yang, Q. (2008). Symmetry-adapted spherical harmonics method for high-resolution 3D single-particle reconstructions.
J Struct Biol 161 , 64-73 .
10.1016/j.jsb.2007.09.016[26] Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: Semi-automated software for high resolution single particle reconstructions.
J Struct Biol 128 , 82-97 .
10.1006/jsbi.1999.4174[27] Mettenleiter, T.C. (2002). Herpesvirus assembly and egress.
J Virol 76, 1537-1547 .
10.1128/JVI.76.4.1537-1547.2002[28] Mindell, J.A., and Grigorieff, N. (2003). Accurate determination of local defocus and specimen tilt in electron microscopy.
J Struct Biol 142, 334-347 .
10.1016/S1047-8477(03)00069-8[29] Mocarski, E.S. (2005). Comparative analysis of herpesvirus-common proteins.
In Human Herpesviruses: Biology, Therapy and Immunoprophylaxis . Arvin, A., Campadelli-Fiume, G., Moore, P., Mocarski, E., Roizman, B., Whitley, R., and Yamanishi, K., eds.
Cambridge, UK, Cambridge University Press.
[30] Okoye, M.E., Sexton, G.L., Huang, E., McCaffery, J.M., and Desai, P. (2006). Functional analysis of the triplex proteins (VP19C and VP23) of herpes simplex virus type 1.
J Virol 80, 929-940 .
10.1128/JVI.80.2.929-940.2006[31] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis.
J Comput Chem 25, 1605-1612 .
10.1002/jcc.20084[32] Toropova, K., Huffman, J.B., Homa, F.L., and Conway, J.F. (2011). The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention.
J Virol 85, 7513-7522 .
10.1128/JVI.00837-11[33] Trus, B.L., Booy, F.P., Newcomb, W.W., Brown, J.C., and Steven, A.C. (1993). Location of VP26 in the herpes simplex virus capsid.
Biophys J 64, A64.
[34] Trus, B.L., Gibson, W., Cheng, N., and Steven, A.C. (1999). Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites.
J Virol 73, 2181-2192 .
[35] Trus, B.L., Heymann, J.B., Nealon, K., Cheng, N., Newcomb, W.W., Brown, J.C., Kedes, D.H., and Steven, A.C. (2001). Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus.
J Virol 75, 2879-2890 .
10.1128/JVI.75.6.2879-2890.2001[36] Trus, B.L., Newcomb, W.W., Booy, F.P., Brown, J.C., and Steven, A.C. (1992). Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simples virus capsid.
Proc Natl Acad Sci USA 89, 11508-11512 .
10.1073/pnas.89.23.11508[37] Trus, B.L., Newcomb, W.W., Cheng, N., Cardone, G., Marekov, L., Homa, F.L., Brown, J.C., and Steven, A.C. (2007). Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids.
Mol Cell 26, 479-489 .
10.1016/j.molcel.2007.04.010[38] Wikoff, W.R., Liljas, L., Duda, R.L., Tsuruta, H., Hendrix, R.W., and Johnson, J.E. (2000). Topologically linked protein rings in the bacteriophage HK97 capsid.
Science 289, 2129-2133 .
10.1126/science.289.5487.2129[39] Wu, L., Lo, P., Yu, X., Stoops, J.K., Forghani, B., and Zhou, Z.H. (2000). Three-dimensional structure of the human herpesvirus 8 capsid.
J Virol 74, 9646-9654 .
10.1128/JVI.74.20.9646-9654.2000[40] Yu, X., Shah, S., Atanasov, I., Lo, P., Liu, F., Britt, W.J., and Zhou, Z.H. (2005a). Three-dimensional localization of the smallest capsid protein in the human cytomegalovirus capsid.
J Virol 79, 1327-1332 .
10.1128/JVI.79.2.1327-1332.2005[41] Yu, X., Trang, P., Shah, S., Atanasov, I., Kim, Y.H., Bai, Y., Zhou, Z.H., and Liu, F. (2005b). Dissecting human cytomegalovirus gene function and capsid maturation by ribozyme targeting and electron cryomicroscopy.
Proc Natl Acad Sci U S A 102, 7103-7108 .
10.1073/pnas.0408826102[42] Yu, X.K., O’Connor, C.M., Atanasov, I., Damania, B., Kedes, D.H., and Zhou, Z.H. (2003). Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging.
J Virol 77, 13182-13193 .
10.1128/JVI.77.24.13182-13193.2003[43] Zhou, Z.H., Chen, D.H., Jakana, J., Rixon, F.J., and Chiu, W. (1999). Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions.
J Virol 73, 3210-3218 .
[44] Zhou, Z.H., Dougherty, M., Jakana, J., He, J., Rixon, F.J., and Chiu, W. (2000). Seeing the herpesvirus capsid at 8.5 ?.
Science 288, 877-880 .
10.1126/science.288.5467.877[45] Zhou, Z.H., He, J., Jakana, J., Tatman, J.D., Rixon, F.J., and Chiu, W. (1995). Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids.
Nat Struct Biol 2, 1026-1030 .
10.1038/nsb1195-1026[46] Zhou, Z.H., Prasad, B.V., Jakana, J., Rixon, F.J., and Chiu, W. (1994). Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy.
J Mol Biol 242, 456-469 .
10.1006/jmbi.1994.1594