Romance of the three domains: how cladistics transformed the classification of cellular organisms

Chi-Chun Ho1, Susanna K. P. Lau1,2,3,4(), Patrick C. Y. Woo1,2,3,4()

PDF(344 KB)
PDF(344 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (9) : 664-676. DOI: 10.1007/s13238-013-3050-9
REVIEW
REVIEW

Romance of the three domains: how cladistics transformed the classification of cellular organisms

  • Chi-Chun Ho1, Susanna K. P. Lau1,2,3,4(), Patrick C. Y. Woo1,2,3,4()
Author information +
History +

Abstract

Cladistics is a biological philosophy that uses genealogical relationship among species and an inferred sequence of divergence as the basis of classification. This review critically surveys the chronological development of biological classification from Aristotle through our postgenomic era with a central focus on cladistics. In 1957, Julian Huxley coined cladogenesis to denote splitting from subspeciation. In 1960, the English translation of Willi Hennig’s 1950 work, Systematic Phylogenetics, was published, which received strong opposition from pheneticists, such as numerical taxonomists Peter Sneath and Robert Sokal, and evolutionary taxonomist, Ernst Mayr, and sparked acrimonious debates in 1960–1980. In 1977–1990, Carl Woese pioneered in using small subunit rRNA gene sequences to delimitate the three domains of cellular life and established major prokaryotic phyla. Cladistics has since dominated taxonomy. Despite being compatible with modern microbiological observations, i.e. organisms with unusual phenotypes, restricted expression of characteristics and occasionally being uncultivable, increasing recognition of pervasiveness and abundance of horizontal gene transfer has challenged relevance and validity of cladistics. The mosaic nature of eukaryotic and prokaryotic genomes was also gradually discovered. In the mid-2000s, high-throughput and whole-genome sequencing became routine and complex geneologies of organisms have led to the proposal of a reticulated web of life. While genomics only indirectly leads to understanding of functional adaptations to ecological niches, computational modeling of entire organisms is underway and the gap between genomics and phenetics may soon be bridged. Controversies are not expected to settle as taxonomic classifications shall remain subjective to serve the human scientist, not the classified.

Keywords

cladistics / phenetics / phylogeny / classification / evolution

Cite this article

Download citation ▾
Chi-Chun Ho, Susanna K. P. Lau, Patrick C. Y. Woo. Romance of the three domains: how cladistics transformed the classification of cellular organisms. Prot Cell, 2013, 4(9): 664‒676 https://doi.org/10.1007/s13238-013-3050-9

References

[1] (1611). THE HOLY BIBLE, Conteyning the Old Testament, AND THE NEW: Newly Translated out of the Originall tongues: & with the former Translations diligently compared and revised, by his Majesties special Comandement. Appointed to be read in Churches. (London, Robert Barker).
[2] Abby , S.S., Tannier, E., Gouy, M., and Daubin, V. (2010). Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests. BMC Bioinformatics 11, 324.10.1186/1471-2105-11-324
[3] Abby , S.S., Tannier, E., Gouy, M., and Daubin, V. (2012). Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci U S A 109, 4962-4967 .10.1073/pnas.1116871109
[4] Achenbach-Richter, L., Gupta, R., Zillig, W., and Woese, C.R. (1988). Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10, 231-240 .10.1016/S0723-2020(88)80007-9
[5] Adl, S.M., Leander, B.S., Simpson, A.G., Archibald, J.M., Anderson, O.R., Bass, D., Bowser, S.S., Brugerolle, G., Farmer, M.A., Karpov, S., . (2007). Diversity, nomenclature, and taxonomy of protists. Syst Biol 56, 684-689 .10.1080/10635150701494127
[6] Ashlock, P.D. (1974). The uses of cladistics. Annu Rev Ecol Systemat 5, 81-99 .10.1146/annurev.es.05.110174.000501
[7] Avis e , J.C. (1974). Systematic value of electrophoretic data. Syst Biol 23, 465-481 .10.1093/sysbio/23.4.465
[8] Balch, W.E., Magrum, L.J., Fox, G.E., Wolfe, R.S., and Woese, C.R. (1977). An ancient divergence among the bacteria. J Mol Evol 9, 305-311 .10.1007/BF01796092
[9] Baldauf, S.L., Palmer, J.D., and Doolittle, W.F. (1996). The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci U S A 93, 7749-7754 .10.1073/pnas.93.15.7749
[10] Bapteste, E., and Brochier, C. (2004). On the conceptual difficulties in rooting the tree of life. Trends Microbiol 12, 9-13 .10.1016/j.tim.2003.11.002
[11] Bapteste, E., and Walsh, D.A. (2005). Does the ‘Ring of Life’ ring true? Trends Microbiol 13, 256-261 .10.1016/j.tim.2005.03.012
[12] Boyden, A. (1947). Homology and analogy. a critical review of the meanings and implications of these concepts in biology. Amer Mid Natur 37, 648-669 .10.2307/2421470
[13] Branfield, P. and Potter, S. (2009). Edexcel IGCSE biology (Harlow, Pearson).
[14] Brenner, D., Staley, J., and Krieg, N. (2005). Classification of prokaryotic organisms and the concept of bacterial speciation. In Bergey’s manual of systematic bacteriology ,Brenner, D., Krieg, N., Staley, J., and Garrity, G. eds. (Springer US), pp. 27-32 .10.1007/0-387-28021-9_4
[15] Bridge, P.D., and Sneath, P.H. (1983). Numerical taxonomy of Streptococcus. J Gen Microbiol 129, 565-597 .
[16] Broom, A., and Sneath, P.H. (1981). Numerical taxonomy of Haemophilus. J Gen Microbiol 126, 123-149 .
[17] Brown, J.R., and Doolittle, W.F. (1995). Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci U S A 92, 2441-2445 .10.1073/pnas.92.7.2441
[18] Brundin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges. With a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae ( Stockholm, Almqvist & Wiksell).
[19] Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R., and Stetter, K.O. (1990). Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13, 263-269 .10.1016/S0723-2020(11)80197-9
[20] Burkholder, J.M., and Glasgow, H.B., Jr. (1997). Trophic controls on stage transformations of a toxic ambush-predator dinofl agellate. J Eukaryot Microbiol 44, 200-205 .10.1111/j.1550-7408.1997.tb05700.x
[21] Caetano-Anolles, G. (2002). Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54, 333-345 .
[22] Cammarano, P., Palm, P., Creti, R., Ceccarelli, E., Sanangelantoni, A.M., and Tiboni, O. (1992). Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol 34, 396-405 .10.1007/BF00162996
[23] Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540-552 .10.1093/oxfordjournals.molbev.a026334
[24] Cavalier-Smith, T. (2004). Only six kingdoms of life. Proc Biol Sci 271, 1251-1262 .10.1098/rspb.2004.2705
[25] Chan, J.F., Lau, S.K., Curreem, S.O., To, K.K., Leung, S.S., Cheng, V.C., Yuen, K.Y., and Woo, P.C. (2012). First report of spontaneous intrapartum Atopobium vaginae bacteremia. J Clin Microbiol 50, 2525-2528 .10.1128/JCM.00212-12
[26] Cole , J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., . (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-145 .10.1093/nar/gkn879
[27] Colwell, R.R. (1970). Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104, 410-433 .
[28] Dagan, T., Roettger, M., Bryant, D., and Martin, W. (2010). Genome networks root the tree of life between prokaryotic domains. Genome Biol Evol 2, 379-392 .10.1093/gbe/evq025
[29] Darwin, C. (1859). On the origin of species by means of natural selection (London,, J. Murray).
[30] Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R.A., Martinez-Arias, R., Henne, A., Wiezer, A., Baumer, S., Jacobi, C., . (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4, 453-461 .
[31] DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069-5072 .10.1128/AEM.03006-05
[32] Doolittle, W.F., and Brown, J.R. (1994). Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci U S A 91, 6721-6728 .10.1073/pnas.91.15.6721
[33] Edgar, R., Asimenos, G., Batzoglou, S., and Sidow, A. (2013). Evolver: a whole-genome sequence evolution simulator.
[34] Federhen, S. (2012). The NCBI Taxonomy database. Nucleic Acids Res 40, D136-143 .10.1093/nar/gkr1178
[35] Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., and Raff, R.A. (1988). Molecular phylogeny of the animal kingdom. Science 239, 748-753 .10.1126/science.3277277
[36] Forterre, P., and Philippe, H. (1999). Where is the root of the universal tree of life? Bioessays 21, 871-879 .10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-Q
[37] Fournier, G.P., and Gogarten, J.P. (2010). Rooting the ribosomal tree of life. Mol Biol Evol 27, 1792-1801 .10.1093/molbev/msq057
[38] Fox, G.E., Magrum, L.J., Balch, W.E., Wolfe, R.S., and Woese, C.R. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A 74, 4537-4541 .10.1073/pnas.74.10.4537
[39] Golding, G.B., and Gupta, R.S. (1995). Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12, 1-6 .10.1093/oxfordjournals.molbev.a040178
[40] Graur, D., and Li, W.-H. (2000). Fundamentals of molecular evolution, 2nd edn (Sunderland, Massachusetts, USA., Sinauer Associates) .
[41] Gribaldo, S., and Cammarano, P. (1998). The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47, 508-516 .10.1007/PL00006407
[42] Gribaldo, S., and Philippe, H. (2002). Ancient phylogenetic relationships. Theor Popul Biol 61, 391-408 .10.1006/tpbi.2002.1593
[43] Gupta, R., Lanter, J.M., and Woese, C.R. (1983). Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium. Science 221, 656-659 .10.1126/science.221.4611.656
[44] Gupta, R.S. (1998). Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62, 1435-1491 .
[45] Hallam, S.J., Konstantinidis, K.T., Putnam, N., Schleper, C., Watanabe, Y., Sugahara, J., Preston, C., de la Torre, J., Richardson, P.M., and DeLong, E.F. (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103, 18296-18301 .10.1073/pnas.0608549103
[46] Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematik (Berlin, Deutscher zentralverlag).
[47] Hennig, W. (1965). Phylogenetic Systematics. Annu Rev Entomol 10, 97-116 .10.1146/annurev.en.10.010165.000525
[48] Hennig, W. (1966). Phylogenetic systematics (Urbana,, University of Illinois Press).
[49] Ho, C .C., Wu, A.K., Tse, C.W., Yuen, K.Y., Lau, S.K., and Woo, P.C. (2012). Automated pangenomic analysis in target selection for PCR detection and identification of bacteria by use of ssGeneFinder Webserver and its application to Salmonella enterica serovar Typhi. J Clin Microbiol 50, 1905-1911 .10.1128/JCM.06843-11
[50] Ho, C .C., Yuen, K.Y., Lau, S.K., and Woo, P.C. (2011). Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104:H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 49, 3714-3716 .10.1128/JCM.05062-11
[51] Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., and Ohkuma, M. (2008a). Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A 105, 5555-5560 .10.1073/pnas.0801389105
[52] Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Toh, H., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., . (2008b). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protest cells in termite gut. Science 322, 1108-1109 .10.1126/science.1165578
[53] Hubbs , C.L. (1944). Concepts of homology and analogy. Amer Nat 78, 289-307 .10.1086/281202
[54] Huxley, J. (1957). The three types of evolutionary process. Nature 180, 454-455 .10.1038/180454a0
[55] Huxley, J. (1959). Clades and grades. in function and taxonomic importance: a symposium. Cain, A.J.ed. ( London, Systematics Association .)
[56] Hyer, B.H., McCarthy, B.J., and Bolton, E.T. (1964). A molecular approach in the systematics of higher organisms. dna interactions provide a basis for detecting common polynucleotide sequences among diverse organisms. Science 144, 959-967 .
[57] Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., and Miyata, T. (1989). Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A 86, 9355-9359 .10.1073/pnas.86.23.9355
[58] Johnson, M.L., and Wicks, M.J. (1959). Serum Protein Electrophoresis in Mammals—Taxonomic Implications. Syst Biol 8, 88-95 .
[59] Jones, J.H., Card, W., Chapman, M., Lennard-Jones, J.E., Morson, B.C., Sackin, M.J., and Sneath, P.H. (1970). The application of numerical taxonomy to the separation of cllonic inflammatory disease. Gut 11, 1062.
[60] Jones , J.H., Lennard-Jones, J.E., Morson, B.C., Chapman, M., Sackin, M.J., Sneath, P.H., Spicer, C.C., and Card, W.I. (1973). Numerical taxonomy and discriminant analysis applied to non-specific colitis. Q J Med 42, 715-732 .
[61] Karr, J.R., Sanghvi, J.C., Macklin, D.N., Gutschow, M.V., Jacobs, J.M., Bolival, B., Jr., Assad-Garcia, N., Glass, J.I., and Covert, M.W. (2012). A whole-cell computational model predicts phenotype from genotype. Cell , 389-401 .10.1016/j.cell.2012.05.044
[62] Keeling, P.J., Burger, G., Durnford, D.G., Lang, B.F., Lee, R.W., Pearlman, R.E., Roger, A.J., and Gray, M.W. (2005). The tree of eukaryotes. Trends Ecol Evol 20, 670-676 .10.1016/j.tree.2005.09.005
[63] Kennedy, S.P., Ng, W.V., Salzberg, S.L., Hood, L., and DasSarma, S. (2001). Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11, 1641-1650 .10.1101/gr.190201
[64] Koonin, E.V., and Wolf, Y.I. (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36, 6688-6719 .10.1093/nar/gkn668
[65] Kunin, V., Goldovsky, L., Darzentas, N., and Ouzounis, C.A. (2005). The net of life: reconstructing the microbial phylogenetic network. Genome Res 15, 954-959 .10.1101/gr.3666505
[66] Lake, J.A., and Rivera, M.C. (2004). Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol 21, 681-690 .10.1093/molbev/msh061
[67] Lake, J.A., Servin, J.A., Herbold, C.W., and Skophammer, R.G. (2008). Evidence for a new root of the tree of life. Syst Biol 57, 835-843 .10.1080/10635150802555933
[68] Lake, J.A., Skophammer, R.G., Herbold, C.W., and Servin, J.A. (2009). Genome beginnings: rooting the tree of life. Philos. Trans R Soc Lond B Biol Sci 364, 2177-2185 .10.1098/rstb.2009.0035
[69] Lau, S.K., Curreem, S.O., Ngan, A.H., Yeung, C.K., Yuen, K.Y., and Woo, P.C. (2011a). First report of disseminated Mycobacterium skin infections in two liver transplant recipients and rapid diagnosis by hsp65 gene sequencing. J Clin Microbiol 49, 3733-3738 .10.1128/JCM.05088-11
[70] Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., So, L.Y., Lau, Y.L., Chan, K.H., Woo, P.C., . (2011b). Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol 85, 11325-11337 .10.1128/JVI.05512-11
[71] Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Xu, H., Lam, C.S., Guo, R., . (2010). Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol , 2808-2819 .10.1128/JVI.02219-09
[72] Lau, S.K., Ng, K.H., Woo, P.C., Yip, K.T., Fung, A.M., Woo, G.K., Chan, K.M., Que, T.L., and Yuen, K.Y. (2006a). Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures. J Clin Pathol 59, 219-222 .10.1136/jcp.2004.025247
[73] Lau, S.K., Woo, P.C., Chan, C.Y., Woo, W.L., Woo, G.K., and Yuen, K.Y. (2005). Typhoid fever associated with acute appendicitis caused by an H1-j strain of Salmonella enterica serotype Typhi. J Clin Microbiol 43, 1470-1472 .10.1128/JCM.43.3.1470-1472.2005
[74] Lau, S.K., Woo, P.C., Luk, W.K., Fung, A.M., Hui, W.T., Fong, A.H., Chow, C.W., Wong, S.S., and Yuen, K.Y. (2006b). Clinical isolates of Streptococcus iniae from Asia are more mucoid and beta-hemolytic than those from North America. Diagn Microbiol Infect Dis 54, 177-181 .10.1016/j.diagmicrobio.2005.09.012
[75] Lau, S.K., Woo, P.C., Yip, C.C., Li, K.S., Fu, C.T., Huang, Y., Chan, K.H., and Yuen, K.Y. (2011c). Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter- and intra-host genetic diversity and recombination. J Gen Virol 92, 2047-2059 .10.1099/vir.0.033688-0
[76] Lawson, F.S., Charlebois, R.L., and Dillon, J.A. (1996). Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol Biol Evol 13, 970-977 .10.1093/oxfordjournals.molbev.a025665
[77] Li, W .H., and Tanimura, M. (1987). The molecular clock runs more slowly in man than in apes and monkeys. Nature 326, 93-96 .10.1038/326093a0
[78] Linnaeus, C. (1751). Philosophia botanica. Lopez , P., Forterre, P., and Philippe, H. (1999). The root of the tree of life in the light of the covarion model. J Mol Evol 49, 496-508 .
[79] Ludwig, W., and Klenk, H.-P. (2005). Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey’s manual of systematic bacteriology ,Brenner, D., Krieg, N., Staley, J., and Garrity, G. eds. (Springer US), pp. 49-66 .10.1007/0-387-28021-9_8
[80] Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., . (2004). ARB: a software environment for sequence data. Nucleic Acids Res 3 2,1363-1371.10.1093/nar/gkh293
[81] Magrum, L.J., Luehrsen, K.R., and Woese, C.R. (1978). Are extreme halophiles actually “bacteria”? J Mol Evol 11, 1-8 .10.1007/BF01768019
[82] Margoliash, E., Smith, E.L., Kreil, G., and Tuppy, H. (1961). Amino-acid sequence of horse heart cytochromec, 1125-1127 .10.1038/1921125a0
[83] Mayr, E. (1974). Cladistic analysis or cladistic classification. Zeitschrift für zoologische Systematik und Evolutionsforschung 12, 94-128 .
[84] Mayr, E. (1981). Biological classification: toward a synthesis of opposing methodologies. Science 214, 510-516 .10.1126/science.214.4520.510
[85] McCarthy, B.J., and Bolton, E.T. (1963). An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A 50, 156-164 .10.1073/pnas.50.1.156
[86] McDade, L. (1990). Hybrids and phylogenetic systematicsi. patterns of character expression in hybrids and their implications for cladistic analysis.Evolution 44, 1685-1700 .10.2307/2409347
[87] McDade , L.A. (1992). Hybrids and phylogenetic systematicsii. the impact of hybrids on cladistic analysis. Evolution 46, 1329-1346 .10.2307/2409940
[88] Medlin, L., Elwood, H.J., Stickel, S., and Sogin, M.L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNAcoding regions. Gene 71, 491-499 .10.1016/0378-1119(88)90066-2
[89] Myers, G.S. (1952). The nature of systematic biology and of a species description. Syst Zool 1, 106-111 .10.2307/2411812
[90] Noller, H.F., and Woese, C.R. (1981). Secondary structure of 16S ribosomal RNA. Science 212, 403-411 .10.1126/science.6163215
[91] Olsen, G.J., Overbeek, R., Larsen, N., Marsh, T.L., McCaughey, M.J., Maciukenas, M.A., Kuan, W.M., Macke, T.J., Xing, Y., and Woese, C.R. (1992). The ribosomal database project. Nucleic Acids Res 20 Suppl, 2199-2200 .10.1093/nar/20.suppl.2199
[92] Olsen, G.J., Pace, N.R., Nuell, M., Kaine, B.P., Gupta, R., and Woese, C.R. (1985). Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J Mol Evol 22, 301-307 .10.1007/BF02115685
[93] Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J.A., and Woese, C.R. (1987). The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. Syst Appl Microbiol 9, 47-53 .10.1016/S0723-2020(87)80055-3
[94] Oyaizu, H., and Woese, C.R. (1985). Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria, 257-263 .10.1016/S0723-2020(85)80028-X
[95] Page, R.D.M., and Holmes, E.C. (1998). Molecular evolution: a phylogenetic approach (Oxford ; Malden, MA, Blackwell Science).
[96] Paster, B.J., Ludwig, W., Weisburg, W.G., Stackebrandt, E., Hespell, R.B., Hahn, C.M., Reichenbach, H., Stetter, K.O., and Woese, C.R. (1985). A phylogenetic grouping of the Bacteroides, Cytophagas, and certain Flavobacteria. Syst Appl Microbiol 6, 34-42 .10.1016/S0723-2020(85)80008-4
[97] Paster, B.J., Stackebrandt, E., Hespell, R.B., Hahn, C.M., and Woese, C.R. (1984). The phylogeny of the spirochetes. Syst Appl Microbiol 5, 337-351 .10.1016/S0723-2020(84)80036-3
[98] Philippe, H., and Forterre, P. (1999). The rooting of the universal tree of life is not reliable. J Mol Evol 49, 509-523 .10.1007/PL00006573
[99] Posada, D., and Crandall, K.A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16, 37-45 .10.1016/S0169-5347(00)02026-7
[100] Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35, 7188-7196 .10.1093/nar/gkm864
[101] Puigbo, P., Wolf, Y.I., and Koonin, E.V. (2009). Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8, 59.10.1186/jbiol159
[102] Razin, S. (1997). Comparative genomics of mycoplasmas. Wien Klin Wochenschr 109, 551-556 .
[103] Rensch, B. (1954). Neuere Probleme der Abstammungslehre: die transspezifische Evolution, 2., stark ver?nderte Aufl. edn (Stuttgart, F. Enke).
[104] Ribeiro, S., and Golding, G.B. (1998). The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15, 779-788 .10.1093/oxfordjournals.molbev.a025983
[105] Saccone, C., Gissi, C., Lanave, C., and Pesole, G. (1995). Molecular classification of living organisms. J Mol Evol 40, 273-279 .10.1007/BF00163232
[106] Salichos, L., and Rokas, A. (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327-331 .10.1038/nature12130
[107] Sanger, F., Donelson, J.E., Coulson, A.R., Kossel, H., and Fischer, D. (1973). Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage flDNA. Proc Natl Acad Sci U S A 70, 1209-1213 .10.1073/pnas.70.4.1209
[108] Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-5467 .10.1073/pnas.74.12.5463
[109] Schliep, K., Lopez, P., Lapointe, F.J., and Bapteste, E. (2011). Harvesting evolutionary signals in a forest of prokaryotic gene trees. Mol Biol Evol 28, 1393-1405 .10.1093/molbev/msq323
[110] Sicheritz-Ponten, T., and Andersson, S.G. (2001). A phylogenomic approach to microbial evolution. Nucleic Acids Res 29, 545-552 .10.1093/nar/29.2.545
[111] Simpson, A.G.B., and Roger, A.J. (2004). The real ‘kingdoms’ of eukaryotes. Curr Biol 14, R693-R696 .10.1016/j.cub.2004.08.038
[112] Sneath, P.H., and Sokal, R.R. (1962). Numerical taxonomy. Nature 193, 855-860 .10.1038/193855a0
[113] Sneath, P.H., Stevens, M., and Sackin, M.J. (1981). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47, 423-448 .10.1007/BF00426004
[114] Sneath, P.H.A. (1995). Thirty years of numerical taxonomy. Syst Biol 44, 281-298 .
[115] Sokal, R.R.S.P.H.A. (1963). Principles of numerical taxonomy (San Francisco, Freeman.).
[116] Sun, F.J., and Caetano-Anolles, G. (2009). The evolutionary history of the structure of 5S ribosomal RNA. J Mol Evol 69, 430-443 .10.1007/s00239-009-9264-z
[117] Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56, 564-577 .10.1080/10635150701472164
[118] Theiβen, G. (2002). Orthology: secret life of genes. Nature 415, 741-741 .10.1038/415741a
[119] Titsworth, E., Grunberg, E., Beskid, G., Cleeland, R., Jr., and Delorenzo, W.F. (1969). Efficiency of a multitest system (Enterotube) for rapid identification of Enterobacteriaceae. Appl Microbiol 18, 207-213 .
[120] Tse, H., Tsang, A.K., Tsoi, H.W., Leung, A.S., Ho, C.C., Lau, S.K., Woo, P.C., and Yuen, K.Y. (2012). Identification of a novel bat papillomavirus by metagenomics. PLoS ONE 7, e43986.10.1371/journal.pone.0043986
[121] USNational Library of Medicine (2006). Genetic Speciation.
[122] Valas, R.E., and Bourne, P.E. (2011). The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6, 16.10.1186/1745-6150-6-16
[123] Washington, J.A., 2nd, Yu, P.K., and Martin, W.J. (1971). Evaluation of accuracy of multitest micromethod system for identification of Enterobacteriaceae. Appl Microbiol 22, 267-269 .
[124] Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697-703 .
[125] Weisburg, W.G., Giovannoni, S.J., and Woese, C.R. (1989). The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol 11, 128-134 .10.1016/S0723-2020(89)80051-7
[126] Williams, D.M., and Ebach, M.C. (2009). What, exactly, is cladistics? Re-writing the history of systematics and biogeography .Acta Biotheor 57, 249-268 .10.1007/s10441-008-9058-5
[127] Woese, C.R. (1979). A proposal concerning the origin of life on the planet earth. J Mol Evol 13, 95-101 .10.1007/BF01732865
[128] Woese, C.R. (2000). Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97, 8392-8396 .10.1073/pnas.97.15.8392
[129] Woese, C.R., and Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74, 5088-5090 .10.1073/pnas.74.11.5088
[130] Woese, C.R., Gupta, R., Hahn, C.M., Zillig, W., and Tu, J. (1984a). The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5, 97-105 .10.1016/S0723-2020(84)80054-5
[131] Woese, C.R., Kandler, O., and Wheelis, M.L. (1990a). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576-4579 .10.1073/pnas.87.12.4576
[132] Woese, C.R., Magrum, L.J., and Fox, G.E. (1978). Archaebacteria. J Mol Evol 11, 245-251 .10.1007/BF01734485
[133] Woese, C.R., Magrum, L.J., Gupta, R., Siegel, R.B., Stahl, D.A., Kop, J., Crawford, N., Brosius, J., Gutell, R., Hogan, J.J., . (1980a). Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 8, 2275-2293 .10.1093/nar/8.10.2275
[134] Woese, C.R., Maloy, S., Mandelco, L., and Raj, H.D. (1990b). Phylogenetic placement of the Spirosomaceae. Syst Appl Microbiol 13, 19-23 .10.1016/S0723-2020(11)80175-X
[135] Woese, C.R., Mandelco, L., Yang, D., Gherna, R., and Madigan, M.T. (1990c). The case for relationship of the flavobacteria and their relatives to the green sulfur bacteria. Syst Appl Microbiol 13, 258-262 .10.1016/S0723-2020(11)80196-7
[136] Woese, C.R., Maniloff, J., and Zablen, L.B. (1980b). Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci U S A 77, 494-498 .10.1073/pnas.77.1.494
[137] Woese, C.R., Stackebrandt, E., Weisburg, W.G., Paster, B.J., Madigan, M.T., Fowler, V.J., Hahn, C.M., Blanz, P., Gupta, R., Nealson, K.H., . (1984b). The phylogeny of purple bacteria: The alpha subdivision. Syst Appl Microbiol 5, 315-326 .10.1016/S0723-2020(84)80034-X
[138] Woese, C.R., Weisburg, W.G., Hahn, C.M., Paster, B.J., Zablen, L.B., Lewis, B.J., Macke, T.J., Ludwig, W., and Stackebrandt, E. (1985). The phylogeny of purple bacteria: The gamma subdivision. Syst Appl Microbiol 6, 25-33 .10.1016/S0723-2020(85)80007-2
[139] Woese, C.R., Yang, D., Mandelco, L., and Stetter, K.O. (1990d). The flexibacter-flavobacter connection. Syst Appl Microbiol 13, 161-165 .10.1016/S0723-2020(11)80163-3
[140] Woo, P.C., Chong, K.T., Tse, H., Cai, J.J., Lau, C.C., Zhou, A.C., Lau, S.K., and Yuen, K.Y. (2006). Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei.FEBS Lett 580, 3409-3416 .10.1016/j.febslet.2006.05.014
[141] Woo, P.C., Fung, A.M., Wong, S.S., Tsoi, H.W., and Yuen, K.Y. (2001a). Isolation and characterization of a Salmonella enterica serotype Typhi variant and its clinical and public health implications. J Clin Microbiol 39, 1190-1194 .10.1128/JCM.39.3.1190-1194.2001
[142] Woo, P.C., Lam, C.W., Tam, E.W., Leung, C.K., Wong, S.S., Lau, S.K., and Yuen, K.Y. (2012). First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei. PLoS Negl Trop Dis 6, e1871.10.1371/journal.pntd.0001871
[143] Woo, P.C., Lau, S.K., Huang, Y., and Yuen, K.Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 234, 1117-1127 .10.3181/0903-MR-94
[144] Woo, P.C., Lau, S.K., Teng, J.L., Tse, H., and Yuen, K.Y. (2008). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14, 908-934 .10.1111/j.1469-0691.2008.02070.x
[145] Woo, P.C., Lau, S.K., Woo, G.K., Fung, A.M., Ngan, A.H., Hui, W.T., and Yuen, K.Y. (2003a). Seronegative bacteremic melioidosis caused by Burkholderia pseudomallei with ambiguous biochemical profile: clinical importance of accurate identification by 16S rRNA gene and groEL gene sequencing. J Clin Microbiol 41, 3973-3977 .10.1128/JCM.41.8.3973-3977.2003
[146] Woo, P.C., Leung, P.K., Leung, K.W., and Yuen, K.Y. (2000). Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. Mol Pathol 53, 211-215 .10.1136/mp.53.4.211
[147] Woo, P.C., Leung, P.K., Wong, S.S., Ho, P.L., and Yuen, K.Y. (2001b). groEL encodes a highly antigenic protein in Burkholderia pseudomallei. Clin Diagn Lab Immunol 8, 832-836 .
[148] Woo, P.C., Ng, K.H., Lau, S.K., Yip, K.T., Fung, A.M., Leung, K.W., Tam, D.M., Que, T.L., and Yuen, K.Y. (2003b). Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol 41, 1996-2001 .10.1128/JCM.41.5.1996-2001.2003
[149] Woo, P.C., Tam, E.W., Chong, K.T., Cai, J.J., Tung, E.T., Ngan, A.H., Lau, S.K., and Yuen, K.Y. (2010). High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J. 277, 3750-3758 .10.1111/j.1742-4658.2010.07776.x
[150] Woo, P.C., Teng, J.L., Yeung, J.M., Tse, H., Lau, S.K., and Yuen, K.Y. (2011). Automated identification of medically important bacteria by 16S rRNA gene sequencing using a novel comprehensive database, 16SpathDB. J Clin Microbiol 49, 1799-1809 .10.1128/JCM.02350-10
[151] Woo , P.C., Wong, S.S., Lum, P.N., Hui, W.T., and Yuen, K.Y. (2001c). Cell-wall-deficient bacteria and culture-negative febrile episodes in bone-marrow-transplant recipients. Lancet 357, 675-679 .10.1016/S0140-6736(00)04131-3
[152] Woo, P.C., Zhen, H., Cai, J.J., Yu, J., Lau, S.K., Wang, J., Teng, J.L., Wong, S.S., Tse, R.H., Chen, R., . (2003c). The mitochondrial genome of the thermal dimorphic fungus Penicillium marneffei is more closely related to those of molds than yeasts. FEBS Lett 555, 469-477 .10.1016/S0014-5793(03)01307-3
[153] Woolley, S.M., Posada, D., and Crandall, K.A. (2008). A comparison of phylogenetic network methods using computer simulation. PLoS ONE 3, e1913.10.1371/journal.pone.0001913
[154] Yan g , D., Kaine, B.P., and Woese, C.R. (1985a). The phylogeny of Archaebacteria. Syst Appl Microbiol 6, 251-256 .
[155] Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G.J., and Woese, C.R. (1985b). Mitochondrial origins. Proc Natl Acad Sci U S A 82, 4443-4447 .10.1073/pnas.82.13.4443
[156] Yang, D., and Woese, C.R. (1989). Phylogenetic sructure of the “Leuconostocs”: an interesting case of a rapidly evolving organism. Syst Appl Microbiol 12, 145-149 .10.1016/S0723-2020(89)80005-0
[157] Yang, Z., and Rannala, B. (2012). Molecular phylogenetics: principles and practice. Nat Rev Genet 13, 303-314 .10.1038/nrg3186
[158] Yang, Z., and Roberts, D. (1995). On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol Biol Evol 12, 451-458 .
[159] Yip, C.C., Lau, S.K., Woo, P.C., Chan, K.H., and Yuen, K.Y. (2011). Complete genome sequence of a coxsackievirus A22 strain in Hong Kong reveals a natural intratypic recombination event. J Virol 85, 12098-12099 .10.1128/JVI.05944-11
[160] Zablen, L.B., Kissil, M.S., Woese, C.R., and Buetow, D.E. (1975). Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. Proc Natl Acad Sci U S A 72, 2418-2422 .10.1073/pnas.72.6.2418
[161] Zuckerkandl, E., and Pauling, L. (1965). Molecules as documents of evolutionary history. J Theor Biol 8, 357-366 .10.1016/0022-5193(65)90083-4
AI Summary AI Mindmap
PDF(344 KB)

Accesses

Citations

Detail

Sections
Recommended

/