[1] Aufsatz, W., Mette, M.F., van der Winden, J., Matzke, A.J.M., and Matzke, M. (2002). RNA-directed DNA methylation in Arabidopsis.
Proc Natl Acad Sci U S A 99, 16499-16506 .
10.1073/pnas.162371499[2] Bejerano, G., Lowe, C.B., Ahituv, N., King, B., Siepel, A., Salama, S.R., Rubin, E.M., Kent, W.J., and Haussler, D. (2006). A distal enhancer and an ultraconserved exon are derived from a novel retroposon.
Nature 441, 87-90 .
10.1038/nature04696[3] Bennetzen, J.L., Ma, J., and Devos, K. (2005). Mechanisms of recent genome size variation in flowering plants.
Ann Bot 95, 127-132 .
10.1093/aob/mci008[4] Cao, X., and Jacobsen, S.E. (2002). Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing.
Curr Biol 12, 1138-1144 .
10.1016/S0960-9822(02)00925-9[5] Chaw, S.M., Chang, C.C., Chen, H.L., and Li, W.H. (2004). Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes.
J Mol Evol 58, 424-441 .
10.1007/s00239-003-2564-9[6] Cheng, C., Daigen, M., and Hirochika, H. (2006). Epigenetic regulation of the rice retrotransposon Tos17.
Mol Genet Genomics 276, 378-390 .
10.1007/s00438-006-0141-9[7] Cheng, Z., Dong, F., Langdon, T., Ouyang, S., Buell, C.R., Gu, M., Blattner, F.R., and Jiang, J. (2002). Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon.
Plant Cell 14, 1691-1704 .
10.1105/tpc.003079[8] Devos, K.M., Brown, J.K.M., and Bennetzen, J.L. (2002). Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis.
Genome Res 12, 1075-1079 .
10.1101/gr.132102[9] Doolittle, W.F., and Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution.
Nature 284, 601-603 .
10.1038/284601a0[10] Dooner, H.K., and He, L. (2008). Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination.
Plant Cell 20, 249-258 .
10.1105/tpc.107.057596[11] Dowen, R.H., Pelizzola, M., Schmitz, R.J., Lister, R., Dowen, J.M., Nery, J.R., Dixon, J.E., and Ecker, J.R. (2012). Widespread dynamic DNA methylation in response to biotic stress.
Proc Natl Acad Sci U S A 109, E2183-2191 .
10.1073/pnas.1209329109[12] Du, C., Swigonova, Z., and Messing, J. (2006). Retrotranspositions in orthologous regions of closely related grass species.
BMC Evol Biol 6, 62.
10.1186/1471-2148-6-62[13] Du, J., Tian, Z., Hans, C.S., Laten, H.M., Cannon, S.B., Jackson, S.A., Shoemaker, R.C., and Ma, J. (2010a). Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
Plant J 63, 584-598 .
10.1111/j.1365-313X.2010.04263.x[14] Du, J., Tian, Z., Bowen, N.J., Schmutz, J., Shoemaker, R.C., and Ma, J. (2010b). Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean.
Plant Cell 22, 48-61 .
10.1105/tpc.109.068775[15] Du, J., Tian, Z., Sui, Y., Zhao, M., Song, Q., Cannon, S.B., Cregan, P.,and Ma, J. (2012). Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean.
Plant Cell 24, 21-32 .
10.1105/tpc.111.092759[16] Finnegan, D. J. (1989). Eukaryotic transposable elements and genome evolution.
Trends Genet 5, 103-107 .
10.1016/0168-9525(89)90039-5[17] Gao, D., Chen, J., Chen, M., Meyers, B.C., and Jackson, S. (2012). A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes.
PLoS One 7, e32010.
10.1371/journal.pone.0032010[18] Gaut, B.S., Wright, S.I., Rizzon, C., Dvorak, J., and Anderson, L.K. (2007). Opinion- Recombination: an underappreciated factor in the evolution of plant genomes.
Nat Rev Genet 8, 77-84 .
10.1038/nrg1970[19] Grandbastien, M.A. (1992). Retroelements in higher-plants.
Trends Genet 8, 103-108 .
[20] Hamilton, A., Voinnet, O., Chappell, L., and Baulcombe, D. (2002). Two classes of short interfering RNA in RNA silencing.
EMBO J 21, 4671-4679 .
10.1093/emboj/cdf464[21] Hanada, K., Vallejo, V., Nobuta, K., Slotkin, R.K., Lisch, D., Meyers, B.C., Shiu, S.H., and Jiang, N. (2009). The functional role of Pack- MULEs in rice inferred from purifying selection and expression pro- file.
Plant Cell 21, 25-38 .
10.1105/tpc.108.063206[22] Hashida, S., Kitamura, K., Mikami, T., and Kishima, Y. (2003). Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus.
Plant Physiol 132, 1207-1216 .
10.1104/pp.102.017533[23] Hawkins, J.S., Proulx, S.R., Rapp, R.A., and Wendel, J.F. (2009). Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants.
Proc Natl Acad Sci U S A 106, 17811-17816 .
10.1073/pnas.0904339106[24] Hirochika, H. (1993). Activation of tobacco retrotransposons during tissue-culture.
EMBO J 12, 2521-2528 .
[25] Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H., and Kanda, M. (1996). Retrotransposons of rice involved in mutations induced by tissue culture.
Proc Natl Acad Sci U S A 93, 7783-7788 .
10.1073/pnas.93.15.7783[26] Hirochika, H., Okamoto, H., and Kakutani, T. (2000). Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation.
Plant Cell 12, 357-368 .
[27] Hirochika, H. (2001). Contribution of the Tos17 retrotransposon to rice functional genomics.
Curr Opin Plant Biol 4, 118-122 .
10.1016/S1369-5266(00)00146-1[28] Hollister, J.D., and Gaut, B.S. (2009). Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression.
Genome Res 19, 1419-1428 .
10.1101/gr.091678.109[29] Huettel, B., Kanno, T., Daxinger, L., Bucher, E., van der Winden, J., Matzke, A.J., and Matzke, M. (2007). RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants.
Biochim Biophys Acta 1769, 358-374 .
10.1016/j.bbaexp.2007.03.001[30]
International Rice Genome Sequencing Project. (2005). The mapbased sequence of the rice genome.
Nature 436, 793-800 .
10.1038/nature03895[31] Jiang, N., Bao, Z., Temnykh, S., Cheng, Z., Jiang, J., Wing, R.A., McCouch, S.R., and Wessler, S.R. (2002a). Dasheng: A recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice.
Genetics 161, 1293-1305 .
[32] Jiang, N., Jordan, I.K., and Wessler, S.R. (2002b). Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome.
Plant Physiol 130, 1697-1705 .
10.1104/pp.015412[33] Jiang, N., Bao, Z., Zhang, X., Eddy, S.R., and Wessler, S.R. (2004). Pack-MULE transposable elements mediate gene evolution in plants.
Nature 431, 569-573 .
10.1038/nature02953[34] Jin, Y.K., and Bennetzen, J.L. (1994). lntegration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bsl retroelement of maize.
Plant Cell 6, 1177-1186 .
[35] Kalendar, R., Vicient, C.M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., and Schulman, A.H. (2004). Large retrotransposon derivatives: Abundant, conserved but nonautonomous retroelements of barley and related genomes.
Genetics 166, 1437-1450 .
10.1534/genetics.166.3.1437[36] Kankel, M.W., Ramsey, D.E., Stokes, T.L., Flowers, S.K., Haag, J.R., Jeddeloh, J.A., Riddle, N.C., Verbsky, M.L., and Richards, E.J. (2003). Arabidopsis MET1 cytosine methyltransferase mutants.
Genetics 163, 1109-1122 .
[37] Kashkush, K., Feldman, M., and Levy, A.A. (2002). Gene loss, silencing and activation in a newly synthesized wheat allotetraploid.
Genetics 160, 1651-1659 .
[38] Kashkush, K., Feldman, M., and Levy, A.A. (2003). Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat.
Nat Genet 33, 102-106 .
10.1038/ng1063[39] Kashkush, K., and Khasdan, V. (2007). Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes.
Genetics 177, 1975-1985 .
10.1534/genetics.107.080234[40] Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007). Genome-wide profiling and analysis of Arabidopsis siRNAs.
PLoS Biol 5, 479-493 .
10.1371/journal.pbio.0050057[41] Kawasaki, S., and Nitasaka, E. (2004). Characterization of Tpn1 family in the Japanese morning glory: En/Spm-related transposable elements capturing host genes.
Plant Cell Physiol 45, 933-944 .
10.1093/pcp/pch109[42] Kejnovsky, E., Kubat, Z., Macas, J., Hobza, R., Mracek, J., and Vyskot, B. (2006). Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat.
Mol Genet Genomics 276, 254-263 .
10.1007/s00438-006-0140-x[43] Kinoshita, T., Miura, A., Choi, Y.H., Kinoshita, Y., Cao, X., Jacobsen, S.E., Fischer, R.L., and Kakutani, T. (2004). One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation.
Science 303, 521-523 .
10.1126/science.1089835[44] Kinoshita, Y., Saze, H., Kinoshita, T., Miura, A., Soppe, W.J.J., Koornneef, M., and Kakutani, T. (2007). Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats.
Plant J 49, 38-45 .
10.1111/j.1365-313X.2006.02936.x[45] Kraitshtein, Z., Yaakov, B., Khasdan, V., and Kashkush, K. (2010). Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat.
Genetics 186, 801-812 .
10.1534/genetics.110.120790[46] Kumar, A., and Bennetzen, J.L. (1999). Plant retrotransposons.
Annu Rev Genet 33, 479-532 .
10.1146/annurev.genet.33.1.479[47] Laten, H.M., Majumdar, A., and Gaucher, E.A. (1998). SIRE-1, a copia/ Ty1-like retroelement from soybean, encodes a retroviral envelopelike protein.
Proc Natl Acad Sci U S A 95, 6897-6902 .
10.1073/pnas.95.12.6897[48] Laten, H.M., Havecker, E.R., Farmer, L.M. and Voytas, D.F. (2003) SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young.
Mol Biol Evol 20, 1222-1230 .
10.1093/molbev/msg142[49] Lippman, Z., and Martienssen, R. (2004). The role of RNA interference in heterochromatic silencing.
Nature 431, 364-370 .
10.1038/nature02875[50] Lisch, D. (2009). Epigenetic regulation of transposable elements in plants.
Annu Rev Plant Biol 60, 43-66 .
10.1146/annurev.arplant.59.032607.092744[51] Lisch, D., and Bennetzen, J.L. (2011). Transposable element origins of epigenetic gene regulation.
Curr Opin Plant Biol 14, 156-161 .
10.1016/j.pbi.2011.01.003[52] Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., and Green, P.J. (2005). Elucidation of the small RNA component of the transcriptome.
Science 309, 1567-1569 .
10.1126/science.1114112[53] Ma, J., Devos, K.M., and Bennetzen, J.L. (2004). Analyses of LTRretrotransposon structures reveal recent and rapid genomic DNA loss in rice.
Genome Res 14, 860-869 .
10.1101/gr.1466204[54] Marillonnet, S., and Wessler, S.R. (1997). Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing.
Plant Cell 9, 967-978 .
10.1105/tpc.9.6.967[55] Matzke, M.A., Kanno, T., Huettel, B., Daxinger, L., and Matzke, A.J.M.(2007). Targets of RNA-directed DNA methylation.
Curr Opin Plant Biol 10, 512-519 .
10.1016/j.pbi.2007.06.007[56] Meyers, B.C., Tingey, S.V., and Morgante, M. (2001). Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome.
Genome Res 10, 1660-1676 .
10.1101/gr.188201[57] Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T. (2001). Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis.
Nature 411, 212-214 .
10.1038/35075612[58] Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K., Shinozuka, Y., Onosato, K., and Hirochika, H. (2003). Target site speci-ficity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome.
Plant Cell 15, 1771-1780 .
10.1105/tpc.012559[59] Nagaki, K., Cheng, Z., Ouyang, S., Talbert, P.B., Kim, M., Jones, K.M., Henikoff, S., Buell, C.R., and Jiang, J. (2004). Sequencing of a rice centromere uncovers active genes.
Nat Genet 36, 138-145 .
10.1038/ng1289[60] Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C.N., Richardson, A.O., Okumoto, Y., Tanisaka, T., and Wessler, S.R. (2009). Unexpected consequences of a sudden and massive transposon amplification on rice gene expression.
Nature 461, 1130-1134 .
10.1038/nature08479[61] Nobuta, K., Venu, R.C., Lu, C., Belo, A., Vemaraju, K., Kulkarni, K., Wang, W., Pillay, M., Green, P.J., Wang, G.L.,
. (2007). An expression atlas of rice mRNAs and small RNAs.
Nat Biotechnol 25, 473-477 .
10.1038/nbt1291[62] Nosaka, M., Itoh, J., Nagato, Y., Ono, A., Ishiwata, A., and Sato, Y. (2012). Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice.
PLoS Genet 8, e1002953.
10.1371/journal.pgen.1002953[63] Ohtsubo, H., Kumekawa, N., and Ohtsubo, E. (1999). RIRE2, a novel gypsy-type retrotransposon from rice.
Genes Genet Syst 74, 83-91 .
10.1266/ggs.74.83[64] Orgel, L.E., and Crick, F.H.C. (1980). Selfish DNA: the ultimate parasite.
Nature 284, 604-607 .
10.1038/284604a0[65] Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A.,
. (2009). The Sorghum bicolor genome and the diversification of grasses.
Nature 457, 551-556 .
10.1038/nature07723[66] Perez-Hormaeche, J., Potet, F., Beauclair, L., Le Masson, I., Courtial, B., Bouche, N., and Lucas, H. (2008). Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing.
Plant Physiol 147, 1264-1278 .
10.1104/pp.108.117846[67] Piegu, B., Guyot, R., Picault, N., Roulin, A., Saniyal, A., Kim, H., Collura, K., Brar, D.S., Jackson, S., Wing, R.A.,
. (2006). Doubling genome size without polyploidization: Dynamics of retrotransposition- driven genomic expansions in Oryza australiensis, a wild relative of rice.
Genome Res 16, 1262-1269 .
10.1101/gr.5290206[68] Rizzon, C., Marais, G., Gouy, M., and Biemont, C. (2002). Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.
Genome Res 12, 400-407 .
[69] Sabot, F., and Schulman, A.H. (2007). Template switching can create complex LTR retrotransposon insertions in Triticeae genomes.
BMC Genomics 8, 247.
10.1186/1471-2164-8-247[70] SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., MelakeBerhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z.,
. (1996). Nested retrotransposons in the intergenic regions of the maize genome.
Science 274, 765-768 .
10.1126/science.274.5288.765[71] SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y., and Bennetzen, J.L. (1998). The paleontology of intergene retrotransposons of maize.
Nat Genet 20, 43-45 .
10.1038/1695[72] Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J.,
. (2010). Genome sequence of the palaeopolyploid soybean.
Nature 463, 178-183 .
10.1038/nature08670[73] Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A.,
. (2009). The B73 maize genome: complexity, diversity, and dynamics.
Science 326, 1112-1115 .
10.1126/science.1178534[74] Slotkin, R.K., Freeling, M., and Lisch, D. (2005). Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication.
Nat Genet 37, 641-644 .
10.1038/ng1576[75] Song, S.U., Gerasimova, T., Kurkulos, M., Boeke, J.D., and Corces, V.G. (1994). An Env-like protein encoded by Drosophila retroelement: evidence that gypsy is an infectious retrovirus.
Gene Dev 8, 2026-2057 .
10.1101/gad.8.17.2046[76] Soppe, W.J.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M., and Peeters, A.J.M. (2000). The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene.
Mol Cell 6, 791-802 .
10.1016/S1097-2765(05)00090-0[77] Steinbauerova, V., Neumann, P., Novak, P., and Macas, J. (2011). A widespread occurrence of extra open reading frames in plant Ty3/ gypsy retrotransposons.
Genetica 139, 1543-1555 .
10.1007/s10709-012-9654-9[78] Sugimoto, K., Takeda, S., and Hirochika, H. (2000). MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes.
Plant Cell 12, 2511-2527 .
[79] Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., Cayrel, A., Gabriella, E., Zhao, P.X., Chabaud, M.
. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula.
Plant J 54, 335-347 .
10.1111/j.1365-313X.2008.03418.x[80] Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H. (1999). A 13- bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors.
Plant J 18, 383-393 .
10.1046/j.1365-313X.1999.00460.x[81]
The Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
Nature 408, 796-815 .
10.1038/35048692[82]
The International Brachypodium Initiative. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon.
Nature 463, 763-768 .
10.1038/nature08747[83] Tian, Z., Rizzon, C., Du, J., Zhu, L., Bennetzen, J.L., Jackson, S.A., Gaut, B.S., and Ma, J. (2009). Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons
? Genome Res 19, 2221-2230 .
10.1101/gr.083899.108[84] Tian, Z., Zhao, M., She, M., Du, J., Cannon, S.B., Liu, X., Xu, X., Qi, X., Li, M.W., Lam, H.M.,
. (2012). Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean.
Plant Cell 24, 4422-4436 .
10.1105/tpc.112.103630[85] Varagona, M.J., Purugganan, M., and Wessler, S.R. (1992). Alternative splicing induced by insertion of retrotransposons into the maize waxy gene.
Plant Cell 4, 811-820 .
[86] Vitte, C., and Bennetzen, J.L. (2006). Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution.
Proc Natl Acad Sci U S A 103, 17638-17643 .
10.1073/pnas.0605618103[87] Vongs, A., Kakutani, T., Martienssen, R.A., and Richards, E.J. (1993). Arabidopsis thaliana DNA methylation mutants.
Science 260, 1926-1928 .
10.1126/science.8316832[88] Wang, H., and Liu, J.S. (2008). LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice.
BMC Genomics 9, 382.
10.1186/1471-2164-9-382[89] Wang, Q., and Dooner, H.K. (2006). Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus.
Proc Natl Acad Sci U S A 103, 17644-17649 .
10.1073/pnas.0603080103[90] Wang, W., Zheng, H., Fan, C., Li, J., Shi, J., Cai, Z., Zhang, G., Liu, D., Zhang, J., Vang, S.,
. (2006). High rate of chimeric gene origination by retroposition in plant genomes.
Plant Cell 18, 1791-1802 .
10.1105/tpc.106.041905[91] White, S.E., Habera, L.F., and Wessler, S.R. (1994). Retrotransposons in the flanking regions of normal plant genes- a role for copia-Like elements in the evolution of gene structure and expression.
Proc Natl Acad Sci U S A 91, 11792-11796 .
10.1073/pnas.91.25.11792[92] Wicker, T., and Keller, B. (2007). Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families.
Genome Res 17, 1072-1081 .
10.1101/gr.6214107[93] Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O.,
. (2007). Aunified classification system for eukaryotic transposable elements.
Nat Rev Genet 8, 973-982 .
10.1038/nrg2165[94] Wilhelm, M., and Wilhelm, F.X. (2001). Reverse transcription of retroviruses and LTR retrotransposons.
Cell Mol Life Sci 58, 1246-1262 .
10.1007/PL00000937[95] Witte, C.P., Le, Q.H., Bureau, T., and Kumar, A. (2001). Terminalrepeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes.
Proc Natl Acad Sci U S A 98, 13778-13783 .
10.1073/pnas.241341898[96] Wright, D.A., and Voytas, D.F. (1998). Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.
Genetics 149, 703-715 .
[97] Wright, D.A., and Voytas, D.F. (2002). Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses.
Genome Res 12, 122-131 .
10.1101/gr.196001[98] Yang, T.J., Kwon, S.J., Choi, B.S., Kim, J.S., Jin, M., Lim, K.B., Park, J.Y., Kim, J.A., Lim, M.H., Kim, H.I.,
. (2007). Characterization of terminal-repeat retrotransposon in miniature (TRIM) in Brassica relatives.
Theor Appl Genet 114, 627-636 .
10.1007/s00122-006-0463-3[99] Zhong, C.X., Marshall, J.B., Topp, C., Mroczek, R., Kato, A., Nagaki, K., Birchler, J.A., Jiang, J., and Dawe, R.K. (2002). Centromeric retroelements and satellites interact with maize kinetochore protein CENH3.
Plant Cell 14, 2825-2836 .
10.1105/tpc.006106[100] Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription.
Nat Genet 39, 61-69 .
10.1038/ng1929