Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6

Jun Li1,2, Yu Dong1,2, Xingru Lü1, Lu Wang1,2, Wei Peng1, Xuejun C. Zhang1, Zihe Rao1,3,4()

PDF(1457 KB)
PDF(1457 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (7) : 548-561. DOI: 10.1007/s13238-013-3031-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6

  • Jun Li1,2, Yu Dong1,2, Xingru Lü1, Lu Wang1,2, Wei Peng1, Xuejun C. Zhang1, Zihe Rao1,3,4()
Author information +
History +

Abstract

Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein- coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism. Because of its involvement in these important processes, LPA degradation needs to be regulated as precisely as its production. Lysophosphatidic acid phosphatase type 6 (ACP6) is an LPA-specific acid phosphatase that hydrolyzes LPA to monoacylglycerol (MAG) and phosphate. Here, we report three crystal structures of human ACP6 in complex with malonate, L- (+)-tartrate and tris, respectively. Our analyses revealed that ACP6 possesses a highly conserved Rossmann-foldlike body domain as well as a less conserved cap domain. The vast hydrophobic substrate-binding pocket, which is located between those two domains, is suitable for accommodating LPA, and its shape is different from that of other histidine acid phosphatases, a fact that is consistent with the observed difference in substrate preferences. Our analysis of the binding of three molecules in the active site reveals the involvement of six conserved and crucial residues in binding of the LPA phosphate group and its catalysis. The structure also indicates a water-supplying channel for substrate hydrolysis. Our structural data are consistent with the fact that the enzyme is active as a monomer. In combination with additional mutagenesis and enzyme activity studies, our structural data provide important insights into substrate recognition and the mechanism for catalytic activity of ACP6.

Keywords

lysophosphatidic acid / histidine acid phosphatase / crystal structure

Cite this article

Download citation ▾
Jun Li, Yu Dong, Xingru Lü, Lu Wang, Wei Peng, Xuejun C. Zhang, Zihe Rao. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6. Prot Cell, 2013, 4(7): 548‒561 https://doi.org/10.1007/s13238-013-3031-z

References

[1] Ando, T., Ishiguro, H., Kuwabara, Y., Kimura, M., Mitsui, A., Kurehara, H., Sugito, N., Tomoda, K., Mori, R., Takashima, N., . (2006). Expression of ACP6 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep 15, 1551-1555 .
[2] Athenstaedt, K., Weys, S., Paltauf, F., and Daum, G. (1999). Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. J Bacteriol 181, 1458-1463 .
[3] Bell, R.M., and Coleman, R.A. (1980). Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem 49, 459-487 .10.1146/annurev.bi.49.070180.002331
[4] Black, M.J., and Jones, M.E. (1983). Inorganicphosphate determination in the presence of a labile organic phosphate: assay for carbamylphosphate phosphataseactivity. Anal Biochem 135, 233-238 .10.1016/0003-2697(83)90756-X
[5] Blackburn, J., and Mansell, J.P. (2012). The emerging role of lysophosphatidic acid (LPA) in skeletal biology. Bone 50, 756-762 .10.1016/j.bone.2011.12.002
[6] Correnti, C., Clifton, M.C., Abergel, R.J., Allred, B., Hoette, T.M., Ruiz, M., Cancedda, R., Raymond, K.N., Descalzi, F., and Strong, R.K. (2011). Galline Ex-FABP is an antibacterial siderocalin and a lysophosphatidic acid sensor functioning through dual ligand specificities. Structure 19, 1796-1806 .10.1016/j.str.2011.09.019
[7] Echols, N., Grosse-Kunstleve, R.W., Afonine, P.V., Bunkoczi, G., Chen, V.B., Headd, J.J., McCoy, A.J., Moriarty, N.W., Read, R.J., Richardson, D.C., . (2012). Graphical tools for macromolecular crystallography in PHENIX. J Appl Crystallogr 45, 581-586 .10.1107/S0021889812017293
[8] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[9] Fleming, J.K., Wojciak, J.M., Campbell, M.A., and Huxford, T. (2011). Biochemical and structural characterization of lysophosphatidic Acid binding by a humanized monoclonal antibody. J Mol Biol 408, 462-476 .10.1016/j.jmb.2011.02.061
[10] Gaits, F., Fourcade, O., Le Balle, F., Gueguen, G., Gaige, B., Gassama-Diagne, A., Fauvel, J., Salles, J.P., Mauco, G., Simon, M.F., . (1997). Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett 410, 54-58 .10.1016/S0014-5793(97)00411-0
[11] Gouet, P., Robert, X., and Courcelle, E. (2003). ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31, 3320-3323 .10.1093/nar/gkg556
[12] Hiroyama, M., and Takenawa, T. (1998). Purification and characterization of a lysophosphatidic acid-specific phosphatase. Biochem J 336, 483-489 .
[13] Hiroyama, M., and Takenawa, T. (1999). Isolation of a cDNA encoding human lysophosphatidic acid phosphatase that is involved in the regulation of mitochondrial lipid biosynthesis. J Biol Chem 274, 29172-29180 .10.1074/jbc.274.41.29172
[14] Holm, L., and Rosenstrom, P. (2010). Daliserver: conservation mapping in 3D. Nucleic Acids Res 38, W545-549 .10.1093/nar/gkq366
[15] Jakob, C.G., Lewinski, K., Kuciel, R., Ostrowski, W., and Lebioda, L. (2000). Crystal structure of human prostatic acid phosphatase. Prostate 42, 211-218 .10.1002/(SICI)1097-0045(20000215)42:3<211::AID-PROS7>3.0.CO;2-U
[16] Jamal, Z., Martin, A., Gomez-Munoz, A., and Brindley, D.N. (1991). Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem 266, 2988-2996 .
[17] Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637 .10.1002/bip.360221211
[18] Kai, M., Wada, I., Imai, S., Sakane, F., and Kanoh, H. (1996). Identifi-cation and cDNA cloning of 35-kDa phosphatidic acid phosphatase (type 2) bound to plasma membranes. Polymerase chain reaction amplification of mouse H2O2-inducible hic53 clone yielded the cDNA encoding phosphatidic acid phosphatase. J Biol Chem 271, 18931-18938 .10.1074/jbc.271.31.18931
[19] Kanoh, H., Imai, S., Yamada, K., and Sakane, F. (1992). Purification and properties of phosphatidic acid phosphatase from porcine thymus membranes. J Biol Chem 267, 25309-25314 .
[20] Kanoh, H., Iwata, T., Ono, T., and Suzuki, T. (1986). Immunological characterization of sn-1,2-diacylglycerol and sn-2-monoacylglycerol kinase from pig brain. J Biol Chem 261, 5597-5602 .
[21] Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797 .10.1016/j.jmb.2007.05.022
[22] Kuciel, R., Bakalova, A., Mazurkiewicz, A., Bilska, A., and Ostrowski, W. (1990). Is the subunit of prostatic phosphatase active? Reversible denaturation of prostatic acid phosphatase. Biochem Int 22, 329-334 .
[23] LaCount, M.W., Handy, G., and Lebioda, L. (1998). Structural origins of L(+)-tartrate inhibition of human prostatic acid phosphatase. J Biol Chem 273, 30406-30409 .10.1074/jbc.273.46.30406
[24] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., . (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 .10.1093/bioinformatics/btm404
[25] Lebiedzinska, M., Szabadkai, G., Jones, A.W., Duszynski, J., and Wieckowski, M.R. (2009). Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol 41, 1805-1816 .10.1016/j.biocel.2009.02.017
[26] Lee, D.C., Cottrill, M.A., Forsberg, C.W., and Jia, Z. (2003). Functional insights revealed by the crystal structures of Escherichia coli glucose- 1-phosphatase. J Biol Chem 278, 31412-31418 .10.1074/jbc.M213154200
[27] Lim, D., Golovan, S., Forsberg, C.W., and Jia, Z. (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7, 108-113 .10.1038/72371
[28] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497 .10.1016/0022-2836(68)90205-2
[29] McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Curr Biol 16, R551-560 .10.1016/j.cub.2006.06.054
[30] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 .10.1107/S0021889807021206
[31] Mills, G.B., and Moolenaar, W.H. (2003). The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3, 582-591 .10.1038/nrc1143
[32] Moolenaar, W.H. (1994). LPA: a novel lipid mediator with diverse biological actions. Trends Cell Biol 4, 213-219 .10.1016/0962-8924(94)90144-9
[33] Moolenaar, W.H., Jalink, K., and van Corven, E.J. (1992). Lysophosphatidic acid: a bioactive phospholipid with growth factor-like properties. Rev Physiol Biochem Pharmacol 119, 47-65 .
[34] Nishimasu, H., Okudaira, S., Hama, K., Mihara, E., Dohmae, N., Inoue, A., Ishitani, R., Takagi, J., Aoki, J., and Nureki, O. (2011). Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol 18, 205-212 .10.1038/nsmb.1998
[35] Ortlund, E., LaCount, M.W., and Lebioda, L. (2003). Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design. Biochemistry 42, 383-389 .10.1021/bi0265067
[36] Osman, C., Voelker, D.R., and Langer, T. (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol 192, 7-16 .10.1083/jcb.201006159
[37] Ostanin, K., Saeed, A., and Van Etten, R.L. (1994). Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J Biol Chem 269, 8971-8978 .
[38] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In Elsevier , pp. 307-326 .
[39] Porvari, K.S., Herrala, A.M., Kurkela, R.M., Taavitsainen, P.A., Lindqvist, Y., Schneider, G., and Vihko, P.T. (1994). Site-directed mutagenesis of prostatic acid phosphatase. Catalytically important aspartic acid 258, substrate specificity, and oligomerization. J Biol Chem 269, 22642-22646 .
[40] Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. (2003). A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59, 1131-1137 .10.1107/S0907444903008126
[41] Reddy, V.S., Rao, D.K., and Rajasekharan, R. (2010). Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim Biophys Acta 1801, 455-461 .10.1016/j.bbalip.2009.12.005
[42] Schneider, G., Lindqvist, Y., and Vihko, P. (1993). Three-dimensional structure of rat acid phosphatase. EMBO J 12, 2609-2615 .
[43] Schneider, T.R., and Sheldrick, G.M. (2002). Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58, 1772-1779 .10.1107/S0907444902011678
[44] Schrodinger, LLC (2010). The PyMOL Molecular Graphics System, Version 1.3r1.
[45] Shekar, S., Tumaney, A.W., Rao, T.J., and Rajasekharan, R. (2002). Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons. Plant Physiol 128, 988-996 .10.1104/pp.010654
[46] Singh, H., Felts, R.L., Schuermann, J.P., Reilly, T.J., and Tanner, J.J. (2009). Crystal Structures of the histidine acid phosphatase from Francisella tularensis provide insight into substrate recognition. J Mol Biol 394, 893-904 .10.1016/j.jmb.2009.10.009
[47] Thompson, F.J., and Clark, M.A. (1994). Purification of a lysophosphatidic acid-hydrolysing lysophospholipase from rat brain. Biochem J 300, 457-461 .
[48] Thomson, F.J., and Clark, M.A. (1995). Purification of a phosphatidicacid- hydrolysing phospholipase A2 from rat brain. Biochem J 306, 305-309 .
[49] Tokumura, A., Majima, E., Kariya, Y., Tominaga, K., Kogure, K., Yas-uda, K., and Fukuzawa, K. (2002). Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277, 39436-39442 .10.1074/jbc.M205623200
[50] Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., . (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal 27, 433-446 .10.1038/sj.emboj.7601963
[51] Umezu-Goto, M., Kishi, Y., Taira, A., Hama, K., Dohmae, N., Takio, K., Yamori, T., Mills, G.B., Inoue, K., Aoki, J., . (2002). Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158, 227-233 .10.1083/jcb.200204026
[52] Van Etten, R.L., and Saini, M.S. (1978). Selective purification of tartrate-inhibitable acid phosphatases: rapid and efficient purification (to homogeneity) of human and canine prostatic acid phosphatases. Clin Chem 24, 1525-1530 .
[53] Waggoner, D.W., Gomez-Munoz, A., Dewald, J., and Brindley, D.N. (1996). Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. J Biol Chem 271, 16506-16509 .10.1074/jbc.271.28.16506
[54] Waggoner, D.W., Martin, A., Dewald, J., Gomez-Munoz, A., and Brindley, D.N. (1995). Purification and characterization of novel plasma membrane phosphatidate phosphohydrolase from rat liver. J Biol Chem 270, 19422-19429 .10.1074/jbc.270.33.19422
[55] Webber, K.O., and Hajra, A.K. (1992). Dihydroxyacetone phosphate acyltransferase. Methods Enzymol 209, 92-98 .10.1016/0076-6879(92)09012-R
[56] Xie, M., and Low, M.G. (1994). Identification and characterization of an ecto-(lyso)phosphatidic acid phosphatase in PAM212 keratinocytes. Arch Biochem Biophys 312, 254-259 .10.1006/abbi.1994.1307
AI Summary AI Mindmap
PDF(1457 KB)

Accesses

Citations

Detail

Sections
Recommended

/