[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., Mc-Coy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination.
Acta Crystallogr D Biol Crystallogr 58, 1948-1954
10.1107/S0907444902016657[2] Back, T.G., and Pharis, R.P. (2003). Structure-activity studies of brassinosteroids and the search for novel analogues and mimetics with improved bioactivity.
J Plant Growth Regul 22, 350-361
10.1007/s00344-003-0057-0[3] Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J.C., Nam, K.H., Li, J., and Chory, J. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis.
Development 131, 5341-5351
10.1242/dev.01403[4] Ceserani, T., Trofka, A., Gandotra, N., and Nelson, T. (2009). VH1/BRL2 receptor-like kinase interacts with vascular-speci? c adaptor proteins VIT and VIK to in? uence leaf venation.
Plant J 57, 1000-1014
10.1111/j.1365-313X.2008.03742.x[5] Clay, N.K., and Nelson, T. (2002). VH1, a provascular cell-speciflc re-ceptor kinase that influences leaf cell patterns in Arabidopsis.
Plant Cell 14, 2707-2722
10.1105/tpc.005884[6] Clouse, S.D., and Sasse, J.M. (1998). BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development.
Annu Rev Plant Physiol Plant Mol Biol 49, 427-451
10.1146/annurev.arplant.49.1.427[7] Di Matteo, A., Federici, L., Mattei, B., Salvi, G., Johnson, K.A., Savino, C., De Lorenzo, G., Tsernoglou, D., and Cervone, F. (2003). The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense.
Proc Natl Acad Sci U S A 100, 10124-10128
10.1073/pnas.1733690100[8] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr 60, 2126-2132
10.1107/S0907444904019158[9] Eswar, N., Eramian, D., Webb, B., Shen, M.Y., and Sali, A. (2008). Protein structure modeling with MODELLER.
Methods Mol Biol 426, 145-159
10.1007/978-1-60327-058-8_8[10] Friedrichsen, D.M., Joazeiro, C.A., Li, J., Hunter, T., and Chory, J. (2000). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase.
Plant Physiol 123, 1247-1256
10.1104/pp.123.4.1247[11] Fukuda, H. (2004). Signals that control plant vascular cell differentiation.
Nat Rev Mol Cell Biol 5, 379-391 .
10.1038/nrm1364[12] He, Z., Wang, Z.Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1.
Science 288, 2360-2363
10.1126/science.288.5475.2360[13] Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J.P., Wilson, I.A., and Chory, J. (2011). Structural basis of steroid hormone percep-tion by the receptor kinase BRI1.
Nature 474, 467-471
10.1038/nature10153[14] Huang, P., Chandra, V., and Rastinejad, F. (2010). Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics.
Ann Rev Physiol 72, 247-272
10.1146/annurev-physiol-021909-135917[15] Jaillais, Y., Belkhadir, Y., Balsemao-Pires, E., Dangl, J.L., and Chory, J. (2011a). Extracellular leucine-rich repeats as a platform for recep-tor/coreceptor complex formation.
Proc Natl Acad Sci U S A 108, 8503-8507
10.1073/pnas.1103556108[16] Jaillais, Y., Hothorn, M., Belkhadir, Y., Dabi, T., Nimchuk, Z.L., Mey-erowitz, E.M., and Chory, J. (2011b). Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor.
Genes Dev 25, 232-237
10.1101/gad.2001911[17] Kim, T.W., and Wang, Z.Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors.
Annu Rev Plant Biol 61, 681-704
10.1146/annurev.arplant.043008.092057[18] Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1.
Nature 433, 167-171
10.1038/nature03227[19] Li, J., and Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction.
Cell 90, 929-938
10.1016/S0092-8674(00)80357-8[20] Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling.
Cell 110, 213-222
10.1016/S0092-8674(02)00812-7[21] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software.
J Appl Crystallogr 40, 658-674
10.1107/S0021889807021206[22] Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M.,
. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice.
Plant Physiol 140, 580-590
10.1104/pp.105.072330[23] Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair medi-ating brassinosteroid signaling.
Cell 110, 203-212
10.1016/S0092-8674(02)00814-0[24] Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S.,
. (1999). BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis.
Proc Natl Acad Sci U S A 96, 15316-15323
10.1073/pnas.96.26.15316[25] Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids.
Plant Physiol 121, 743-752
10.1104/pp.121.3.743[26] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol 276, 307-326
10.1016/S0076-6879(97)76066-X[27] Renaud, J.P., and Moras, D. (2000). Structural studies on nuclear re-ceptors.
Cell Mol Life Sci 57, 1748-1769
10.1007/PL00000656[28] She, J., Han, Z., Kim, T.W., Wang, J., Cheng, W., Chang, J., Shi, S., Yang, M., Wang, Z.Y., and Chai, J. (2011). Structural insight into brassinosteroid perception by BRI1.
Nature 474, 472-476
10.1038/nature10178[29] Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases.
Proc Natl Acad Sci U S A 98, 10763-10768
10.1073/pnas.181141598[30] Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J. (2005). Molecular mechanisms of steroid hormone signaling in plants.
Annu Rev Cell Dev Biol 21, 177-201
10.1146/annurev.cellbio.21.090704.151241[31] Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane.
Science 313, 1118-1122
10.1126/science.1127593[32] Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling.
Dev Cell 15, 220-235
10.1016/j.devcel.2008.06.011[33] Wang, Z.Y., Bai, M.Y., Oh, E., and Zhu, J.Y. (2012). Brassinosteroid signaling network and regulation of photomorphogenesis.
Annu Rev Genet 46, 701-724
10.1146/annurev-genet-102209-163450[34] Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids.
Nature 410, 380-383
10.1038/35066597[35] Zhou, A., Wang, H., Walker, J.C., and Li, J. (2004). BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling.
Plant J 40, 399-409
10.1111/j.1365-313X.2004.02214.x