Structural basis for differential recognition of brassinolide by its receptors

Ji She1,2, Zhifu Han3, Bin Zhou4, Jijie Chai3,5()

PDF(1540 KB)
PDF(1540 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (6) : 475-482. DOI: 10.1007/s13238-013-3027-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural basis for differential recognition of brassinolide by its receptors

  • Ji She1,2, Zhifu Han3, Bin Zhou4, Jijie Chai3,5()
Author information +
History +

Abstract

Brassinosteroids, a group of plant steroid hormones, regulate many aspects of plant growth and development. We and other have previously solved the crystal structures of BRI1(LRR) in complex with brassinolide, the most active brassinosteroid identifi ed thus far. Although these studies provide a structural basis for the recognition of brassinolide by its receptor BRI1, it still remains poorly understood how the hormone differentiates among its conserved receptors. Here we present the crystal structure of the BRI1 homolog BRL1 in complex with brassinolide. The structure shows that subtle differences around the brassinolide binding site can generate a striking effect on its recognition by the BRI1 family of receptors. Structural comparison of BRL1 and BRI1 in their brassinolide-bound forms reveals the molecular basis for differential binding of brassinolide to its different receptors, which can be used for more effi cient design of plant growth regulators for agricultural practice. On the basis of our structural studies and others’ data, we also suggest possible mechanisms for the activation of BRI1 family receptors.

Keywords

X-ray crystallography / leucine-rich repeat domain / brassinosteroid / BRL1

Cite this article

Download citation ▾
Ji She, Zhifu Han, Bin Zhou, Jijie Chai. Structural basis for differential recognition of brassinolide by its receptors. Prot Cell, 2013, 4(6): 475‒482 https://doi.org/10.1007/s13238-013-3027-8

References

[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., Mc-Coy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954 10.1107/S0907444902016657
[2] Back, T.G., and Pharis, R.P. (2003). Structure-activity studies of brassinosteroids and the search for novel analogues and mimetics with improved bioactivity. J Plant Growth Regul 22, 350-361 10.1007/s00344-003-0057-0
[3] Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J.C., Nam, K.H., Li, J., and Chory, J. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341-5351 10.1242/dev.01403
[4] Ceserani, T., Trofka, A., Gandotra, N., and Nelson, T. (2009). VH1/BRL2 receptor-like kinase interacts with vascular-speci? c adaptor proteins VIT and VIK to in? uence leaf venation. Plant J 57, 1000-1014 10.1111/j.1365-313X.2008.03742.x
[5] Clay, N.K., and Nelson, T. (2002). VH1, a provascular cell-speciflc re-ceptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell 14, 2707-2722 10.1105/tpc.005884
[6] Clouse, S.D., and Sasse, J.M. (1998). BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49, 427-451 10.1146/annurev.arplant.49.1.427
[7] Di Matteo, A., Federici, L., Mattei, B., Salvi, G., Johnson, K.A., Savino, C., De Lorenzo, G., Tsernoglou, D., and Cervone, F. (2003). The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci U S A 100, 10124-10128 10.1073/pnas.1733690100
[8] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 10.1107/S0907444904019158
[9] Eswar, N., Eramian, D., Webb, B., Shen, M.Y., and Sali, A. (2008). Protein structure modeling with MODELLER. Methods Mol Biol 426, 145-159 10.1007/978-1-60327-058-8_8
[10] Friedrichsen, D.M., Joazeiro, C.A., Li, J., Hunter, T., and Chory, J. (2000). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123, 1247-1256 10.1104/pp.123.4.1247
[11] Fukuda, H. (2004). Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5, 379-391 .10.1038/nrm1364
[12] He, Z., Wang, Z.Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360-2363 10.1126/science.288.5475.2360
[13] Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J.P., Wilson, I.A., and Chory, J. (2011). Structural basis of steroid hormone percep-tion by the receptor kinase BRI1. Nature 474, 467-471 10.1038/nature10153
[14] Huang, P., Chandra, V., and Rastinejad, F. (2010). Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Ann Rev Physiol 72, 247-272 10.1146/annurev-physiol-021909-135917
[15] Jaillais, Y., Belkhadir, Y., Balsemao-Pires, E., Dangl, J.L., and Chory, J. (2011a). Extracellular leucine-rich repeats as a platform for recep-tor/coreceptor complex formation. Proc Natl Acad Sci U S A 108, 8503-8507 10.1073/pnas.1103556108
[16] Jaillais, Y., Hothorn, M., Belkhadir, Y., Dabi, T., Nimchuk, Z.L., Mey-erowitz, E.M., and Chory, J. (2011b). Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25, 232-237 10.1101/gad.2001911
[17] Kim, T.W., and Wang, Z.Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61, 681-704 10.1146/annurev.arplant.043008.092057
[18] Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171 10.1038/nature03227
[19] Li, J., and Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929-938 10.1016/S0092-8674(00)80357-8
[20] Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222 10.1016/S0092-8674(02)00812-7
[21] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 10.1107/S0021889807021206
[22] Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., . (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol 140, 580-590 10.1104/pp.105.072330
[23] Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair medi-ating brassinosteroid signaling. Cell 110, 203-212 10.1016/S0092-8674(02)00814-0
[24] Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., . (1999). BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci U S A 96, 15316-15323 10.1073/pnas.96.26.15316
[25] Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121, 743-752 10.1104/pp.121.3.743
[26] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 10.1016/S0076-6879(97)76066-X
[27] Renaud, J.P., and Moras, D. (2000). Structural studies on nuclear re-ceptors. Cell Mol Life Sci 57, 1748-1769 10.1007/PL00000656
[28] She, J., Han, Z., Kim, T.W., Wang, J., Cheng, W., Chang, J., Shi, S., Yang, M., Wang, Z.Y., and Chai, J. (2011). Structural insight into brassinosteroid perception by BRI1. Nature 474, 472-476 10.1038/nature10178
[29] Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98, 10763-10768 10.1073/pnas.181141598
[30] Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J. (2005). Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21, 177-201 10.1146/annurev.cellbio.21.090704.151241
[31] Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118-1122 10.1126/science.1127593
[32] Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15, 220-235 10.1016/j.devcel.2008.06.011
[33] Wang, Z.Y., Bai, M.Y., Oh, E., and Zhu, J.Y. (2012). Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46, 701-724 10.1146/annurev-genet-102209-163450
[34] Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380-383 10.1038/35066597
[35] Zhou, A., Wang, H., Walker, J.C., and Li, J. (2004). BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40, 399-409 10.1111/j.1365-313X.2004.02214.x
AI Summary AI Mindmap
PDF(1540 KB)

Accesses

Citations

Detail

Sections
Recommended

/