Discovery of a novel gene involved in autolysis of Clostridium cells

Liejian Yang1,2, Guanhui Bao1,2, Yan Zhu1, Hongjun Dong1(), Yanping Zhang1, Yin Li1()

PDF(735 KB)
PDF(735 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (6) : 467-474. DOI: 10.1007/s13238-013-3025-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Discovery of a novel gene involved in autolysis of Clostridium cells

  • Liejian Yang1,2, Guanhui Bao1,2, Yan Zhu1, Hongjun Dong1(), Yanping Zhang1, Yin Li1()
Author information +
History +

Abstract

Cell a utolysis plays important physiological roles in the life cycle of clostridial cells. Unders tanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profi le, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, signifi cantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.

Keywords

cell autolysis / autolysins / Clostridium / gene SMB_G3117

Cite this article

Download citation ▾
Liejian Yang, Guanhui Bao, Yan Zhu, Hongjun Dong, Yanping Zhang, Yin Li. Discovery of a novel gene involved in autolysis of Clostridium cells. Prot Cell, 2013, 4(6): 467‒474 https://doi.org/10.1007/s13238-013-3025-x

References

[1] Allcock, E.R., Reid, S.J., Jones, D.T., and Woods, D.R. (1981). Autol-ytic activity and an autolysis-deficient mutant of Clostridium aceto-butylicum. Appl Environ Microbiol 42, 929-935
[2] Andreesen, J., Bahl, H., and Gottschalk, G. (1989). Introduction to the physiology and biochemistry of the genus Clostridium. Clostridia. 27-62.Edited by Minton, N. and Clarke, D. New York and London:Plenum Press
[3] Bao, G., Wang, R., Zhu, Y., Dong, H., Mao, S., Zhang, Y., Chen, Z., Li, Y., and Ma, Y. (2011). Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multire-plicon genome architecture. J Bacteriol 193, 5007-5008 10.1128/JB.05596-11
[4] Barber, J.M., Robb, F.T., Webster, J.R., and Woods, D.R. (1979). Bac-teriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol 37, 433-437
[5] Blackman, S.A., Smith, T.J., and Foster, S.J. (1998). The role of autol-ysins during vegetative growth of Bacillus subtilis 168. Microbiol-UK 144, 73-82 10.1099/00221287-144-1-73
[6] ChapotChartier, M.P. (1996). Autolysins of lactic acid bacteria. Lait 76, 91-109
[7] Croux, C., Canard, B., Goma, G., and Soucaille, P. (1992a). Autolysis of Clostrtdium acetobutylicum ATCC 824. J Gen Microbiol 138, 861-869 10.1099/00221287-138-5-861
[8] Croux, C., Canard, B., Goma, G., and Soucaille, P. (1992b). Purifica-tion and characterization of an extracellular muramidase of Clostrid-ium acetobutylicum ATCC 824 that acts on non-N-acetylated pepti-doglycan. Appl Environ Microbiol 58, 1075-1081
[9] Croux, C., and Garcia, J.L. (1992). Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli. FEMS Microbiol Lett 74, 13-20 10.1111/j.1574-6968.1992.tb05336.x
[10] Dong, H., Tao, W., Zhang, Y., and Li, Y. (2012). Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engi-neering. Metab Eng 14, 59-67 10.1016/j.ymben.2011.10.004
[11] Dong, H., Zhang, Y., Dai, Z., and Li, Y. (2010). Engineering Clostridium strain to accept unmethylated DNA. PLoS ONE 5, e9038.10.1371/journal.pone.0009038
[12] Eltsov, M., and Zuber, B. (2006). Transmission electron microscopy of the bacterial nucleoid. J Struct Biol 156, 246-254 10.1016/j.jsb.2006.07.007
[13] Foster, S.J. (1994). The role and regulation of cell-wall structural dy-namics during differentiation of endospore-forming bacteria. J Appl Bacteriol 76, S25-39 10.1111/j.1365-2672.1994.tb04355.x
[14] Foster, S.J. (1995). Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177, 5723-5725
[15] Garcia, J.L., Garcia, E., Sanchezpuelles, J.M., and Lopez, R. (1988). Identification of a lytic enzyme of Clostridium acetobutylicum that degrades choline-containing pneumococcal cell walls. Fems Micro-biolLett 52, 133-137 10.1016/0378-1097(88)90313-8
[16] Hartmanis, M.G., and Gatenbeck, S. (1984). Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47, 1277-1283 .
[17] Heap, J.T., Kuehne, S.A., Ehsaan, M., Cartman, S.T., Cooksley, C.M., Scott, J.C., and Minton, N.P. (2010). The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80, 49-55 .10.1016/j.mimet.2009.10.018
[18] Heidrich, C., Templin, M.F., Ursinus, A., Merdanovic, M., Berger, J., Schwarz, H., de Pedro, M.A., and Holtje, J.V. (2001). Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 41, 167-178 10.1046/j.1365-2958.2001.02499.x
[19] Hirsch, A., and Grinsted, E. (1954). Methods for the growth and enu-meration of anaerobic spore-formers from cheese, with observa-tions on the effect of nisin. J. Dairy Res . 21, 101-110 10.1017/S0022029900007196
[20] Holtje, J.V. (1995). From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164, 243-254 10.1007/BF02529958
[21] Jayaswal, R.K., Lee, Y.I., and Wilkinson, B.J. (1990). Cloning and ex-pression of a Staphylococcus aureus gene encoding a peptidogly-can hydrolase activity. J Bacteriol 172, 5783-5788
[22] Jones, S.W., Paredes, C.J., Tracy, B., Cheng, N., Sillers, R., Senger, R.S., and Papoutsakis, E.T. (2008). The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9 R114. 10.1186/gb-2008-9-7-r114
[23] Ju, C.X., Gu, H.W., and Lu, C.P. (2012). Characterization and function-al analysis of atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol 194, 1464-1473 10.1128/JB.06231-11
[24] Kuehne, S.A., Heap, J.T., Cooksley, C.M., Cartman, S.T., and Minton, N.P. (2011). ClosTron-mediated engineering of Clostridium. In Strain Engineering (Springer) , pp. 389-407 10.1007/978-1-61779-197-0_23
[25] Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., and Jung, K.S. (2008). Fermentative butanol production by Clostridia. Biotechnol Bioeng 101, 209-228 10.1002/bit.22003
[26] Lutke-Eversloh, T., and Bahl, H. (2011). Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22, 634-647 10.1016/j.copbio.2011.01.011
[27] Mermelstein, L.D., Welker, N.E., Bennett, G.N., and Papoutsakis, E.T. (1992). Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat Biotech 10, 190-195 10.1038/nbt0292-190
[28] Nolling, J., Breton, G., Omelchenko, M.V., Makarova, K.S., Zeng, Q.D., Gibson, R., Lee, H.M., Dubois, J., Qiu, D.Y., Hitti, J., . (2001). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183, 4823-4838 10.1128/JB.183.16.4823-4838.2001
[29] Rashid, M.H., Kuroda, A., and Sekiguchi, J. (1993). Bacillus subtilis mutant de? cient in the major autolytic amidase and glucosaminidase is impaired in motility. FEMS Microbiol Lett 112, 135-140 10.1111/j.1574-6968.1993.tb06438.x
[30] Rehner, S.A., and Samuels, G.J. (1994). Taxonomy and phylogeny of gliocladium analyzed from nuclear large subunit ribosomal DNA-sequences. Mycol Res 98, 625-634 10.1016/S0953-7562(09)80409-7
[31] Shockman, G.D., and Holtje, J.-V. (1994). Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall, J.-M. Ghuysen, and R. Hakenbeck, eds. (Amsterdam, Elsevier) , pp. 131-166 10.1016/S0167-7306(08)60410-X
[32] Smith, T.J., Blackman, S.A., and Foster, S.J. (2000). Autolysins of Ba-cillus subtilis: multiple enzymes with multiple functions. Microbiol-UK 146, 249-262
[33] Tamura, H., Yamada, A., and Kato, H. (2012). Identi? cation and char-acterization of an autolysin gene, atlA, from Streptococcus criceti. J Microbiol 50, 777-784 10.1007/s12275-012-2187-1
[34] Webster, J.R., Reid, S.J., Jones, D.T., and Woods, D.R. (1981). Puri? -cation and characterization of an autolysin from Clostridium aceto-butylicum. Appl Environ Microbiol 41, 371-374
[35] Yoshino, S., Ogata, S., and Hayashida, S. (1982). Some properties of autolysin of Clostridium saccharoperbutylacetonicum. Agric Biol Chem 46, 1243-1248 10.1271/bbb1961.46.1243
[36] Zhang, Y.H., Zhang, Y.P., Zhu, Y., Mao, S.M., and Li, Y. (2010). Prot-eomic analyses to reveal the protective role of glutathione inresist-ance of Lactococcus lactis to osmotic stress. Appl Environ Microbiol 76, 3177-3186 10.1128/AEM.02942-09
[37] Zingaro, K.A., and Terry Papoutsakis, E. (2013). GroESL overexpres-sion imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable pat-terns. Metab Eng 15, 196-205 10.1016/j.ymben.2012.07.009
AI Summary AI Mindmap
PDF(735 KB)

Accesses

Citations

Detail

Sections
Recommended

/