C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process

Mei Han1,2, Hao Chang1,3, Peng Zhang1,2, Tao Chen4, Yanhua Zhao1, Yongdeng Zhang1, Pingsheng Liu1, Tao Xu1(), Pingyong Xu5()

PDF(954 KB)
PDF(954 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (5) : 364-372. DOI: 10.1007/s13238-013-3015-z
RESEARCH ARTICLE
RESEARCH ARTICLE

C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process

  • Mei Han1,2, Hao Chang1,3, Peng Zhang1,2, Tao Chen4, Yanhua Zhao1, Yongdeng Zhang1, Pingsheng Liu1, Tao Xu1(), Pingyong Xu5()
Author information +
History +

Abstract

Lipid droplets, which are conserved across almost all species, are cytoplasmic organelles used to store neutral lipids. Identifi cation of lipid droplet regulators will be conducive to resolving obesity and other fat-associated diseases. In this paper, we selected 11 candidates that might be associated with lipid metabolism in Caenorhabditis elegans. Using a BODIPY 493/503-based fl ow cytometry screen, 6 negative and 3 positive regulators of fat content were identifi ed. We selected one negative regulator of lipid content, C13C4.5, for future study. C13C4.5 was mainly expressed in the worm intestine. We found that this gene was important for maintaining the metabolism of lipid droplets. Biochemical results revealed that 50% of triacylglycerol (TAG) was lost in C13C4.5 knockout worms. Stimulated Raman scattering (SRS) signals in C13C4.5 mutants showed only 49.6% of the fat content in the proximal intestinal region and 86.3% in the distal intestinal region compared with wild type animals. The mean values of lipid droplet size and intensity in C13C4.5 knockout animals were found to be signifi cantly decreased compared with those in wild type worms. The LMP-1-labeled membrane structures in worm intestines were also enlarged in C13C4.5 mutant animals. Finally, fertility defects were found in C13C4.5(ok2087) mutants. Taken together, these results indicate that C13C4.5 may regulate the fertility of C. elegans by changing the size and fat content of lipid droplets by interfering with lysosomal morphology and function.

Keywords

C13C4.5 / Spinster / lipid droplet / SRS microscopy / lysosomal enlargement / fertility

Cite this article

Download citation ▾
Mei Han, Hao Chang, Peng Zhang, Tao Chen, Yanhua Zhao, Yongdeng Zhang, Pingsheng Liu, Tao Xu, Pingyong Xu. C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process. Prot Cell, 2013, 4(5): 364‒372 https://doi.org/10.1007/s13238-013-3015-z

References

[1] Ashrafi , K., Chang, F.Y., Watts, J.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268-272 .10.1038/nature01279
[2] Beckman, M. (2006). Cell biology. Great balls of fat. Science 311, 1232-1234 .10.1126/science.311.5765.1232
[3] Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94 .
[4] Brock, T.J., Browse, J., and Watts, J.L. (2007). Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176, 865-875 .10.1534/genetics.107.071860
[5] Brooks, K.K., Liang, B., and Watts, J.L. (2009). The influence of bacterial diet on fat storage in C. elegans. PloS One 4, e7545.10.1371/journal.pone.0007545
[6] Chang, H., Zhang, M., Ji, W., Chen, J., Zhang, Y., Liu, B., Lu, J., Zhang, J., Xu, P., and Xu, T. (2012). A unique series of reversibly switchable fluorescent proteins with benefi cial properties for various applications. Proc Natl Acad Sci USA 109, 4455-4460 .10.1073/pnas.1113770109
[7] Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T., and Valdivia, R.H. (2008). Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci U S A 105, 9379-9384 .10.1073/pnas.0712241105
[8] Dermaut, B., Norga, K.K., Kania, A., Verstreken, P., Pan, H., Zhou, Y., Callaerts, P., and Bellen, H.J. (2005). Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. J Cell Biol 170, 127-139 .10.1083/jcb.200412001
[9] Fei, W., Shui, G., Gaeta, B., Du, X., Kuerschner, L., Li, P., Brown, A.J., Wenk, M.R., Parton, R.G., and Yang, H. (2008). Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180, 473-482 .10.1083/jcb.200711136
[10] Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391, 806-811 .10.1038/35888
[11] Freudiger, C.W., Min, W., Saar, B.G., Lu, S., Holtom, G.R., He, C., Tsai, J.C., Kang, J.X., and Xie, X.S. (2008). Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857-1861 .10.1126/science.1165758
[12] Goodman, J.M. (2008). The gregarious lipid droplet. J Biol Chem 283, 28005-28009 .10.1074/jbc.R800042200
[13] Guo, Y., Walther, T.C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., Wong, J.S., Vale, R.D., Walter, P., and Farese, R.V. (2008). Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657-661 .10.1038/nature06928
[14] Herker, E., and Ott, M. (2011). Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrin Met 22, 241-248 . 10.1016/j.tem.2011.03.004
[15] Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., . (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237 .10.1038/nature01278
[16] Kang, H.W., Niepel, M.W., Han, S., Kawano, Y., and Cohen, D.E. (2012). Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism. FASEB J 26, 2209-2221 .10.1096/fj.11-202853
[17] Kernohan, E.A., and Lepherd, E.E. (1969). Size distribution of fat globules in cows milk during milking, measured with a coulter counter. J Dairy Res 36, 177.10.1017/S002202990001267X
[18] Kim, J.K., Gabel, H.W., Kamath, R.S., Tewari, M., Pasquinelli, A., Rual, J.F., Kennedy, S., Dybbs, M., Bertin, N., Kaplan, J.M., . (2005). Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164-1167 .10.1126/science.1109267
[19] Klapper, M., Ehmke, M., Palgunow, D., Bohme, M., Matthaus, C., Bergner, G., Dietzek, B., Popp, J., and Doring, F. (2011). Fluorescence- based fi xative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and fl ow cytometry approaches. J Lipid Res 52, 1281-1293 .10.1194/jlr.D011940
[20] Lapierre, L.R., Silvestrini, M.J., Nunez, L., Ames, K., Wong, S., Le, T.T., Hansen, M., and Melendez, A. (2013). Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9.
[21] Martin, S., and Parton, R.G. (2006). Lipid droplets: a unifi ed view of a dynamic organelle. Nature reviews. Mol Cell Biol 7, 373-378 .10.1038/nrm1912
[22] McLeod, M.P., Warren, R.L., Hsiao, W.W., Araki, N., Myhre, M., Fernandes, C., Miyazawa, D., Wong, W., Lillquist, A.L., Wang, D., . (2006). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103, 15582-15587 .10.1073/pnas.0607048103
[23] Murphy, D.J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40, 325-438 .10.1016/S0163-7827(01)00013-3
[24] Murphy, S., Martin, S., and Parton, R.G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791, 441-447 .10.1016/j.bbalip.2008.07.004
[25] Nakano, Y., Fujitani, K., Kurihara, J., Ragan, J., Usui-Aoki, K., Shimoda, L., Lukacsovich, T., Suzuki, K., Sezaki, M., Sano, Y., . (2001). Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21, 3775-3788 .10.1128/MCB.21.11.3775-3788.2001
[26] O’Rourke, E.J., Soukas, A.A., Carr, C.E., and Ruvkun, G. (2009). C. elegans major fats are stored in vesicles distinct from lysosomerelated organelles. Cell Metab 10, 430-435 .10.1016/j.cmet.2009.10.002
[27] Pospisilik, J.A., Schramek, D., Schnidar, H., Cronin, S.J., Nehme, N.T., Zhang, X., Knauf, C., Cani, P.D., Aumayr, K., Todoric, J., . (2010). Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148-160 .10.1016/j.cell.2009.12.027
[28] Rong, Y., McPhee, C.K., Deng, S., Huang, L., Chen, L., Liu, M., Tracy, K., Baehrecke, E.H., Yu, L., and Lenardo, M.J. (2011). Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A 108, 7826-7831 . 10.1073/pnas.1013800108
[29] Rual, J.F., Ceron, J., Koreth, J., Hao, T., Nicot, A.S., Hirozane-Kishikawa, T., Vandenhaute, J., Orkin, S.H., Hill, D.E., van den Heuvel, S., . (2004). Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14, 2162-2168 .10.1101/gr.2505604
[30] Samsa, M.M., Mondotte, J.A., Iglesias, N.G., Assuncao-Miranda, I., Barbosa-Lima, G., Da Poian, A.T., Bozza, P.T., and Gamarnik, A.V. (2009). Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5, e1000632.10.1371/journal.ppat.1000632
[31] Szymanski, K.M., Binns, D., Bartz, R., Grishin, N.V., Li, W.P., Agarwal, A.K., Garg, A., Anderson, R.G., and Goodman, J.M. (2007). The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104, 20890-20895 .10.1073/pnas.0704154104
[32] Walther, T.C., and Farese, R.V., Jr. (2012). Lipid droplets and cellular lipid metabolism. Ann Rev Biochem 81, 687-714 .10.1146/annurev-biochem-061009-102430
[33] Wang, M.C., Min, W., Freudiger, C.W., Ruvkun, G., and Xie, X.S. (2011). RNAi screening for fat regulatory genes with SRS microscopy. Nat Methods 8, 135-138 .10.1038/nmeth.1556
[34] Watts, J.L. (2009). Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol Metab 20, 58-65 .10.1016/j.tem.2008.11.002
[35] Yen, K., Le, T.T., Bansal, A., Narasimhan, S.D., Cheng, J.X., and Tissenbaum, H.A. (2010). A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PloS One 5.
[36] Zehmer, J.K., Huang, Y., Peng, G., Pu, J., Anderson, R.G., and Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914-921 .10.1002/pmic.200800584
[37] Zhang, M., Chang, H., Zhang, Y., Yu, J., Wu, L., Ji, W., Chen, J., Liu, B., Lu, J., Liu, Y., . (2012). Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9, 727-729 .10.1038/nmeth.2021
AI Summary AI Mindmap
PDF(954 KB)

Accesses

Citations

Detail

Sections
Recommended

/