[1] Akiyama, T., Maeda, S., Yamane, S., Ogino, K., Kasai, M., Kajiura, F., Matsumoto, M., and Inoue, J. (2005). Dependence of self-tolerance on TRAF6-directed development of thymic stroma.
Science 308, 248-251 .
10.1126/science.1105677[2] Akiyama, T., Shimo, Y., Yanai, H., Qin, J., Ohshima, D., Maruyama, Y., Asaumi, Y., Kitazawa, J., Takayanagi, H., Penninger, J.M.,
. (2008). The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance.
Immunity 29, 423-437 .
10.1016/j.immuni.2008.06.015[3] Akiyama, T., Shinzawa, M., and Akiyama, N. (2012). TNF receptor family signaling in the development and functions of medullary thymic epithelial cells.
Front Immunol 3, 278.
10.3389/fimmu.2012.00278[4] Alexandropoulos, K., and Danzl, N.M. (2012). Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development.
Immunol Res 54, 177-190 .
10.1007/s12026-012-8301-y[5] Alexandropoulos, K., Donlin, L.T., Xing, L., and Regelmann, A.G. (2003). Sin: good or bad
? AT lymphocyte perspective. Immunol Rev 192, 181-195 .
10.1034/j.1600-065X.2003.00021.x[6] Alpdogan, O., Hubbard, V.M., Smith, O.M., Patel, N., Lu, S., Goldberg, G.L., Gray, D.H., Feinman, J., Kochman, A.A., Eng, J.M.,
. (2006). Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration.
Blood 107, 2453-2460 .
10.1182/blood-2005-07-2831[7] Anderson, G., and Takahama, Y. (2012). Thymic epithelial cells: working class heroes for T cell development and repertoire selection.
Trends Immunol 33, 256-263 .
10.1016/j.it.2012.03.005[8] Anderson, M.S., Venanzi, E.S., Klein, L., Chen, Z., Berzins, S.P., Turley, S.J., von Boehmer, H., Bronson, R., Dierich, A., Benoist, C.,
. (2002). Projection of an immunological self shadow within the thymus by the aire protein.
Science 298, 1395-1401 .
10.1126/science.1075958[9] Auerbach, R. (1960). Morphogenetic interactions in the development of the mouse thymus gland.
Dev Biol 2, 271-284 .
10.1016/0012-1606(60)90009-9[10] Balciunaite, G., Keller, M.P., Balciunaite, E., Piali, L., Zuklys, S., Mathieu, Y.D., Gill, J., Boyd, R., Sussman, D.J., and Hollander, G.A. (2002). Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice.
Nat Immunol 3, 1102-1108 .
10.1038/ni850[11] Basak, S., and Hoffmann, A. (2008). Crosstalk via the NF-kappaB signaling system.
Cytokine Growth Factor Rev 19, 187-197 .
10.1016/j.cytogfr.2008.04.005[12] Baxter, R.M., and Brissette, J.L. (2002). Role of the nude gene in epithelial terminal differentiation.
J Invest Dermatol 118, 303-309 .
10.1046/j.0022-202x.2001.01662.x[13] Bennett, A.R., Farley, A., Blair, N.F., Gordon, J., Sharp, L., and Blackburn, C.C. (2002). Identifi cation and characterization of thymic epithelial progenitor cells.
Immunity 16, 803-814 .
10.1016/S1074-7613(02)00321-7[14] Berent-Maoz, B., Montecino-Rodriguez, E., Signer, R.A., and Dorshkind, K. (2012). Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a.
Blood 119, 5715-5721 .
10.1182/blood-2011-12-400002[15] Blackburn, C.C., Augustine, C.L., Li, R., Harvey, R.P., Malin, M.A., Boyd, R.L., Miller, J.F., and Morahan, G. (1996). The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors.
Proc Natl Acad Sci USA 93, 5742-5746 .
10.1073/pnas.93.12.5742[16] Bleul, C.C., and Boehm, T. (2005). BMP signaling is required for normal thymus development.
J Immunol 175, 5213-5221 .
[17] Bleul, C.C., Corbeaux, T., Reuter, A., Fisch, P., Monting, J.S., and Boehm, T. (2006). Formation of a functional thymus initiated by a postnatal epithelial progenitor cell.
Nature 441, 992-996 .
10.1038/nature04850[18] Bockman, D.E., and Kirby, M.L. (1984). Dependence of thymus development on derivatives of the neural crest.
Science 223, 498-500 .
10.1126/science.6606851[19] Boehm, T., Scheu, S., Pfeffer, K., and Bleul, C.C. (2003). Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR.
J Exp Med 198, 757-769 .
10.1084/jem.20030794[20] Bravo-Nuevo, A., O'Donnell, R., Rosendahl, A., Chung, J.H., Benjamin, L.E., and Odaka, C.RhoB defi ciency in thymic medullary epithelium leads to early thymic atrophy.
Int Immunol 23, 593-600 .
10.1093/intimm/dxr064[21] Burkly, L., Hession, C., Ogata, L., Reilly, C., Marconi, L.A., Olson, D., Tizard, R., Cate, R., and Lo, D. (1995). Expression of relB is required for the development of thymic medulla and dendritic cells.
Nature 373, 531-536 .
10.1038/373531a0[22] Calderon, L., and Boehm, T. (2012). Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments.
Cell 149, 159-172 .
10.1016/j.cell.2012.01.049[23] Candi, E., Dinsdale, D., Rufini, A., Salomoni, P., Knight, R.A., Mueller, M., Krammer, P.H., and Melino, G. (2007a). TAp63 and DeltaNp63 in cancer and epidermal development.
Cell Cycle 6, 274-285 .
10.4161/cc.6.3.3797[24] Candi, E., Rufini, A., Terrinoni, A., Giamboi-Miraglia, A., Lena, A.M., Mantovani, R., Knight, R., and Melino, G. (2007b). DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2.
Proc Natl Acad Sci U S A 104, 11999-12004 .
10.1073/pnas.0703458104[25] Chen, L., Xiao, S., and Manley, N.R. (2009). Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner.
Blood 113, 567-574 .
10.1182/blood-2008-05-156265[26] Cheng, L., Guo, J., Sun, L., Fu, J., Barnes, P.F., Metzger, D., Chambon, P., Oshima, R.G., Amagai, T., and Su, D.M. (2010). Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy.
J Biol Chem 285, 5836-5847 .
10.1074/jbc.M109.072124[27] Chin, R.K., Lo, J.C., Kim, O., Blink, S.E., Christiansen, P.A., Peterson, P., Wang, Y., Ware, C., and Fu, Y.X. (2003). Lymphotoxin pathway directs thymic Aire expression.
Nat Immunol 4, 1121-1127 .
10.1038/ni982[28] Chin, R.K., Zhu, M., Christiansen, P.A., Liu, W., Ware, C., Peltonen, L., Zhang, X., Guo, L., Han, S., Zheng, B.,
. (2006). Lymphotoxin pathway-directed, autoimmune regulator-independent central tolerance to arthritogenic collagen.
J Immunol 177, 290-297 .
[29] Corbeaux, T., Hess, I., Swann, J.B., Kanzler, B., Haas-Assenbaum, A., and Boehm, T. (2010). Thymopoiesis in mice depends on a Foxn1- positive thymic epithelial cell lineage.
Proc Natl Acad Sci USA 107, 16613-16618 .
10.1073/pnas.1004623107[30] Cordier, A.C., and Heremans, J.F. (1975). Nude mouse embryo: ectodermal nature of the primordial thymic defect.
Scand J Immunol 4, 193-196 .
10.1111/j.1365-3083.1975.tb02616.x[31] Danso-Abeam, D., Humblet-Baron, S., Dooley, J., and Liston, A. (2011). Models of aire-dependent gene regulation for thymic negative selection.
Front Immunol 2, 14.
10.3389/fimmu.2011.00014[32] Danzl, N.M., Donlin, L.T., and Alexandropoulos, K. (2010). Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin.
J Exp Med 207, 999-1013 .
10.1084/jem.20092384[33] Derbinski, J., Gabler, J., Brors, B., Tierling, S., Jonnakuty, S., Hergenhahn, M., Peltonen, L., Walter, J., and Kyewski, B. (2005). Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels.
J Exp Med 202, 33-45 .
10.1084/jem.20050471[34] Derbinski, J., Pinto, S., Rosch, S., Hexel, K., and Kyewski, B. (2008). Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism.
Proc Natl Acad Sci USA 105, 657-662 .
10.1073/pnas.0707486105[35] Dooley, J., Erickson, M., and Farr, A.G. (2008). Alterations of the medullary epithelial compartment in the Aire-defi cient thymus: implications for programs of thymic epithelial differentiation.
J Immunol 181, 5225-5232 .
[36] Endres, R., Alimzhanov, M.B., Plitz, T., Futterer, A., Kosco-Vilbois, M.H., Nedospasov, S.A., Rajewsky, K., and Pfeffer, K. (1999). Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells.
J Exp Med 189, 159-168 .
10.1084/jem.189.1.159[37] Erickson, M., Morkowski, S., Lehar, S., Gillard, G., Beers, C., Dooley, J., Rubin, J.S., Rudensky, A., and Farr, A.G. (2002). Regulation of thymic epithelium by keratinocyte growth factor.
Blood 100, 3269-3278 .
10.1182/blood-2002-04-1036[38] Farr, A.G., Dooley, J.L., and Erickson, M. (2002). Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation.
Immunol Rev 189, 20-27 .
10.1034/j.1600-065X.2002.18903.x[39] Flomerfelt, F.A., ElKassar, N., Gurunathan, C., Chua, K.S., League, S.C., Schmitz, S., Gershon, T.R., Kapoor, V., Yan, X.Y., Schwartz, R.H.,
. (2010). Tbata modulates thymic stromal cell proliferation and thymus function.
J Exp Med 207, 2521-2532 .
10.1084/jem.20092759[40] Flomerfelt, F.A., Kim, M.G., and Schwartz, R.H. (2000). Spatial, a gene expressed in thymic stromal cells, depends on three-dimensional thymus organization for its expression.
Genes Immun 1, 391-401 .
10.1038/sj.gene.6363695[41] Frank, D.U., Fotheringham, L.K., Brewer, J.A., Muglia, L.J., Tristani-Firouzi, M., Capecchi, M.R., and Moon, A.M. (2002). An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome.
Develop- ment 129, 4591-4603 .
[42] Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H., and Pfeffer, K. (1998). The lymphotoxin beta receptor controls organogenesis and affi nity maturation in peripheral lymphoid tissues.
Immunity 9, 59-70 .
10.1016/S1074-7613(00)80588-9[43] Gabler, J., Arnold, J., and Kyewski, B. (2007). Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells.
Eur J Immunol 37, 3363-3372 .
10.1002/eji.200737131[44] Gardiner, J.R., Jackson, A.L., Gordon, J., Lickert, H., Manley, N.R., and Basson, M.A. (2012). Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis.
Development 139, 3456-3466 .
10.1242/dev.079400[45] Gardner, J.M., Fletcher, A.L., Anderson, M.S., and Turley, S.J. (2009). AIRE in the thymus and beyond.
Curr Opin Immunol 21, 582-589 .
10.1016/j.coi.2009.08.007[46] Gillard, G.O., Dooley, J., Erickson, M., Peltonen, L., and Farr, A.G. (2007). Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation.
J Immunol 178, 3007-3015 .
[47] Gillard, G.O., and Farr, A.G. (2005). Contrasting models of promiscuous gene expression by thymic epithelium.
J Exp Med 202, 15-19 .
10.1084/jem.20050976[48] Giraud, M., Yoshida, H., Abramson, J., Rahl, P.B., Young, R.A., Mathis, D., and Benoist, C. (2012). Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells.
Proc Natl Acad Sci U S A 109, 535-540 .
10.1073/pnas.1119351109[49] Gommeaux, J., Gregoire, C., Nguessan, P., Richelme, M., Malissen, M., Guerder, S., Malissen, B., and Carrier, A. (2009). Thymus-specifi c serine protease regulates positive selection of a subset of CD4+ thymocytes.
Eur J Immunol 39, 956-964 .
10.1002/eji.200839175[50] Gossens, K., Naus, S., Hollander, G.A., and Ziltener, H.J. (2010). De-ficiency of the metalloproteinase-disintegrin ADAM8 is associated with thymic hyper-cellularity.
PLoS One 5, e12766.
10.1371/journal.pone.0012766[51] Gravano, D.M., McLelland, B.T., Horiuchi, K., and Manilay, J.O. (2010). ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression.
PLoS One 5, e13528.
10.1371/journal.pone.0013528[52] Gray, D., Abramson, J., Benoist, C., and Mathis, D. (2007). Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire.
J Exp Med 204, 2521-2528 .
10.1084/jem.20070795[53] Guerder, S., Viret, C., Luche, H., Ardouin, L., and Malissen, B. (2012). Differential processing of self-antigens by subsets of thymic stromal cells.
Curr Opin Immunol 24, 99-104 .
10.1016/j.coi.2012.01.008[54] Guo, J., Feng, Y., Barnes, P., Huang, F.F., Idell, S., Su, D.M., and Shams, H. (2012). Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging.
PLoS One 7, e34681.
10.1371/journal.pone.0034681[55] Hale, L.P., and Markert, M.L. (2004). Corticosteroids regulate epithelial cell differentiation and Hassall body formation in the human thymus.
J Immunol 172, 617-624 .
[56] Hamazaki, Y., Fujita, H., Kobayashi, T., Choi, Y., Scott, H.S., Matsumoto, M., and Minato, N. (2007). Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin.
Nat Immunol 8, 304-311 .
10.1038/ni1438[57] Heinonen, K.M., Vanegas, J.R., Brochu, S., Shan, J., Vainio, S.J., and Perreault, C. (2011a). Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors.
Blood 118, 5163-5173 .
10.1182/blood-2011-04-350553[58] Heinonen, K.M., Vanegas, J.R., Lew, D., Krosl, J., and Perreault, C. (2011b). Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway.
PLoS One 6, e19279.
10.1371/journal.pone.0019279[59] Hikosaka, Y., Nitta, T., Ohigashi, I., Yano, K., Ishimaru, N., Hayashi, Y., Matsumoto, M., Matsuo, K., Penninger, J.M., Takayanagi, H.,
. (2008). The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator.
Immunity 29, 438-450 .
10.1016/j.immuni.2008.06.018[60] Irla, M., Hollander, G., and Reith, W. (2009). Control of central selftolerance induction by autoreactive CD4+ thymocytes.
Trends Immunol 31, 71-79 .
10.1016/j.it.2009.11.002[61] Irla, M., Hugues, S., Gill, J., Nitta, T., Hikosaka, Y., Williams, I.R., Hubert, F.X., Scott, H.S., Takahama, Y., Hollander, G.A.,
. (2008). Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity.
Immunity 29, 451-463 .
10.1016/j.immuni.2008.08.007[62] Itoi, M., Kawamoto, H., Katsura, Y., and Amagai, T. (2001). Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage.
Int Immunol 13, 1203-1211 .
10.1093/intimm/13.9.1203[63] Janes, S.M., Ofstad, T.A., Campbell, D.H., Watt, F.M., and Prowse, D.M. (2004). Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt.
J Cell Sci 117, 4157-4168 .
10.1242/jcs.01302[64] Jenkinson, W.E., Bacon, A., White, A.J., Anderson, G., and Jenkinson, E.J. (2008). An epithelial progenitor pool regulates thymus growth.
J Immunol 181, 6101-6108 .
[65] Jenkinson, W.E., Jenkinson, E.J., and Anderson, G. (2003). Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors.
J Exp Med 198, 325-332 .
10.1084/jem.20022135[66] Kajiura, F., Sun, S., Nomura, T., Izumi, K., Ueno, T., Bando, Y., Kuroda, N., Han, H., Li, Y., Matsushima, A.,
. (2004). NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner.
J Immunol 172, 2067-2075 .
[67] Kinoshita, D., Hirota, F., Kaisho, T., Kasai, M., Izumi, K., Bando, Y., Mouri, Y., Matsushima, A., Niki, S., Han, H.,
. (2006). Essential role of IkappaB kinase alpha in thymic organogenesis required for the establishment of self-tolerance.
J Immunol 176, 3995-4002 .
[68] Koch, U., Fiorini, E., Benedito, R., Besseyrias, V., Schuster-Gossler, K., Pierres, M., Manley, N.R., Duarte, A., Macdonald, H.R., and Radtke, F. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment.
J Exp Med 205, 2515-2523 .
10.1084/jem.20080829[69] Kvell, K., Varecza, Z., Bartis, D., Hesse, S., Parnell, S., Anderson, G., Jenkinson, E.J., and Pongracz, J.E. (2010). Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence.
PLoS One 5, e10701.
10.1371/journal.pone.0010701[70] Liiv, I., Haljasorg, U., Kisand, K., Maslovskaja, J., Laan, M., and Peterson, P. (2012). AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH.
Biochem Biophys Res Commun 423, 32-37 .
10.1016/j.bbrc.2012.05.057[71] Liu, C., Saito, F., Liu, Z., Lei, Y., Uehara, S., Love, P., Lipp, M., Kondo, S., Manley, N., and Takahama, Y. (2006). Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization.
Blood 108, 2531-2539 .
10.1182/blood-2006-05-024190[72] Lomada, D., Liu, B., Coghlan, L., Hu, Y., and Richie, E.R. (2007). Thymus medulla formation and central tolerance are restored in IKKalpha-/- mice that express an IKKalpha transgene in keratin 5+ thymic epithelial cells.
J Immunol 178, 829-837 .
[73] Macedo, C., Evangelista, A.F., Marques, M.M., Octacilio-Silva, S., Donadi, E.A., Sakamoto-Hojo, E.T., and Passos, G.A. (2012). Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells.
Immunobiology 218, 554-560 .
10.1016/j.imbio.2012.06.013[74] Manley, N.R., and Condie, B.G. (2010). Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation.
Prog Mol Biol Transl Sci 92, 103-120 .
10.1016/S1877-1173(10)92005-X[75] Martins, V.C., Boehm, T., and Bleul, C.C. (2008). Ltbetar signaling does not regulate Aire-dependent transcripts in medullary thymic epithelial cells.
J Immunol 181, 400-407 .
[76] Masuda, K., Germeraad, W.T., Satoh, R., Itoi, M., Ikawa, T., Minato, N., Katsura, Y., van Ewijk, W., and Kawamoto, H. (2009). Notch activation in thymic epithelial cells induces development of thymic microenvironments.
Mol Immunol 46, 1756-1767 .
10.1016/j.molimm.2009.01.015[77] Mathis, D., and Benoist, C. (2009). Aire. Annu Rev Immunol 27, 287- 312.
10.1146/annurev.immunol.25.022106.141532[78] Min, D., Panoskaltsis-Mortari, A., Kuro, O.M., Hollander, G.A., Blazar, B.R., and Weinberg, K.I. (2007). Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging.
Blood 109, 2529-2537 .
10.1182/blood-2006-08-043794[79] Min, D., Taylor, P.A., Panoskaltsis-Mortari, A., Chung, B., Danilenko, D.M., Farrell, C., Lacey, D.L., Blazar, B.R., and Weinberg, K.I. (2002). Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation.
Blood 99, 4592-4600 .
10.1182/blood.V99.12.4592[80] Mori, K., Itoi, M., Tsukamoto, N., and Amagai, T. (2010). Foxn1 is essential for vascularization of the murine thymus anlage.
Cell Immunol 260, 66-69 .
10.1016/j.cellimm.2009.09.007[81] Mouri, Y., Yano, M., Shinzawa, M., Shimo, Y., Hirota, F., Nishikawa, Y., Nii, T., Kiyonari, H., Abe, T., Uehara, H.,
. (2011). Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma.
J Immunol 186, 5047-5057 .
10.4049/jimmunol.1003533[82] Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007). Regulation of CD8+ T cell development by thymus-specifi c proteasomes.
Science 316, 1349-1353 .
10.1126/science.1141915[83] Murata, S., Takahama, Y., and Tanaka, K. (2008). Thymoproteasome: probable role in generating positively selecting peptides.
Curr Opin Immunol 20, 192-196 .
10.1016/j.coi.2008.03.002[84] Nakagawa, T., Roth, W., Wong, P., Nelson, A., Farr, A., Deussing, J., Villadangos, J.A., Ploegh, H., Peters, C., and Rudensky, A.Y. (1998). Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus.
Science 280, 450-453 .
10.1126/science.280.5362.450[85] Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., and Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations.
Nature 372, 103-107 .
10.1038/372103a0[86] Nishikawa, Y., Hirota, F., Yano, M., Kitajima, H., Miyazaki, J., Kawamoto, H., Mouri, Y., and Matsumoto, M. (2009). Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation.
J Exp Med 207, 963-971 .
10.1084/jem.20092144[87] Nowell, C.S., Bredenkamp, N., Tetelin, S., Jin, X., Tischner, C., Vaidya, H., Sheridan, J.M., Stenhouse, F.H., Heussen, R., Smith, A.J.,
. (2011). Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence.
PLoS Genet 7, e1002348.
10.1371/journal.pgen.1002348[88] Oliveira, E.H., Macedo, C., Donate, P.B., Almeida, R.S., Pezzi, N., Nguyen, C., Rossi, M.A., Sakamoto-Hojo, E.T., Donadi, E.A., and Passos, G.A. (2012). Expression profi le of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).
Immunobiology 218, 96-104 .
10.1016/j.imbio.2012.02.005[89] Osada, M., Jardine, L., Misir, R., Andl, T., Millar, S.E., and Pezzano, M. (2010). DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration.
PLoS One 5, e9062.
10.1371/journal.pone.0009062[90] Patel, S.R., Gordon, J., Mahbub, F., Blackburn, C.C., and Manley, N.R. (2006). Bmp4 and Noggin expression during early thymus and parathyroid organogenesis.
Gene Expr Patterns 6, 794-799 .
10.1016/j.modgep.2006.01.011[91] Ramsey, C., Winqvist, O., Puhakka, L., Halonen, M., Moro, A., Kampe, O., Eskelin, P., Pelto-Huikko, M., and Peltonen, L. (2002). Aire de-ficient mice develop multiple features of APECED phenotype and show altered immune response.
Hum Mol Genet 11, 397-409 .
10.1093/hmg/11.4.397[92] Revest, J.M., Suniara, R.K., Kerr, K., Owen, J.J., and Dickson, C. (2001). Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb.
J Immunol 167, 1954-
1961.
[93] Ripen, A.M., Nitta, T., Murata, S., Tanaka, K., and Takahama, Y. (2011). Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit beta5t.
Eur J Immunol 41, 1278-1287 .
10.1002/eji.201041375[94] Roberts, N.A., White, A.J., Jenkinson, W.E., Turchinovich, G., Nakamura, K., Withers, D.R., McConnell, F.M., Desanti, G.E., Benezech, C., Parnell, S.M.,
. (2012). Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium.
Immunity 36, 427-437 .
10.1016/j.immuni.2012.01.016[95] Rode, I., and Boehm, T. (2012). Regenerative capacity of adult cortical thymic epithelial cells.
Proc Natl Acad Sci U S A 109, 3463-3468 .
10.1073/pnas.1118823109[96] Rodewald, H.R., Paul, S., Haller, C., Bluethmann, H., and Blum, C. (2001). Thymus medulla consisting of epithelial islets each derived from a single progenitor.
Nature 414, 763-768 .
10.1038/414763a[97] Rossi, S., Blazar, B.R., Farrell, C.L., Danilenko, D.M., Lacey, D.L., Weinberg, K.I., Krenger, W., and Hollander, G.A. (2002). Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease.
Blood 100, 682-691 .
10.1182/blood.V100.2.682[98] Rossi, S.W., Jeker, L.T., Ueno, T., Kuse, S., Keller, M.P., Zuklys, S., Gudkov, A.V., Takahama, Y., Krenger, W., Blazar, B.R.,
. (2007a). Keratinocyte growth factor (KGF) enhances postnatal Tcell development via enhancements in proliferation and function of thymic epithelial cells.
Blood 109, 3803-3811 .
10.1182/blood-2006-10-049767[99] Rossi, S.W., Jenkinson, W.E., Anderson, G., and Jenkinson, E.J. (2006). Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium.
Nature 441, 988-991 .
10.1038/nature04813[100] Rossi, S.W., Kim, M.Y., Leibbrandt, A., Parnell, S.M., Jenkinson, W.E., Glanville, S.H., McConnell, F.M., Scott, H.S., Penninger, J.M., Jenkinson, E.J.,
. (2007b). RANK signals from CD4(+)3(-) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla.
J Exp Med 204, 1267-1272 .
10.1084/jem.20062497[101] Saade, M., Irla, M., Yammine, M., Boulanger, N., Victorero, G., Vincentelli, R., Penninger, J.M., Hollander, G.A., Chauvet, S., and Nguyen, C. (2010). Spatial (Tbata) expression in mature medullary thymic epithelial cells.
Eur J Immunol 40, 530-538 .
10.1002/eji.200939605[102] Seach, N., Ueno, T., Fletcher, A.L., Lowen, T., Mattesich, M., Engwerda, C.R., Scott, H.S., Ware, C.F., Chidgey, A.P., Gray, D.H.,
. (2008). The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells.
J Immunol 180, 5384-5392 .
[103] Senoo, M., Pinto, F., Crum, C.P., and McKeon, F. (2007). p63 Is essential for the proliferative potential of stem cells in stratifi ed epithelia.
Cell 129, 523-536 .
10.1016/j.cell.2007.02.045[104] Shakib, S., Desanti, G.E., Jenkinson, W.E., Parnell, S.M., Jenkinson, E.J., and Anderson, G. (2009). Checkpoints in the development of thymic cortical epithelial cells.
J Immunol 182, 130-137 .
10.4049/jimmunol.0990018[105] Sitnik, K.M., Kotarsky, K., White, A.J., Jenkinson, W.E., Anderson, G., and Agace, W.W. (2012). Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis.
J Immunol 188, 4801-4809 .
10.4049/jimmunol.1200358[106] Su, D., Ellis, S., Napier, A., Lee, K., and Manley, N.R. (2001). Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis.
Dev Biol 236, 316-329 .
10.1006/dbio.2001.0342[107] Su, D.M., Navarre, S., Oh, W.J., Condie, B.G., and Manley, N.R. (2003). A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation.
Nat Immunol 4, 1128-1135 .
10.1038/ni983[108] Suniara, R.K., Jenkinson, E.J., and Owen, J.J. (2000). An essential role for thymic mesenchyme in early T cell development.
J Exp Med 191, 1051-1056 .
10.1084/jem.191.6.1051[109] Takahama, Y., Takada, K., Murata, S., and Tanaka, K. (2012). beta5tcontaining thymoproteasome: specifi c expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells.
Curr Opin Immunol 24, 92-98 .
10.1016/j.coi.2012.01.006[110] Talaber, G., Kvell, K., Varecza, Z., Boldizsar, F., Parnell, S.M., Jenkinson, E.J., Anderson, G., Berki, T., and Pongracz, J.E. (2011). Wnt- 4 protects thymic epithelial cells against dexamethasone-induced senescence.
Rejuvenation Res 14, 241-248 .
10.1089/rej.2010.1110[111] Tsai, P.T., Lee, R.A., and Wu, H. (2003). BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis.
Blood 102, 3947-3953 .
10.1182/blood-2003-05-1657[112] Varecza, Z., Kvell, K., Talaber, G., Miskei, G., Csongei, V., Bartis, D., Anderson, G., Jenkinson, E.J., and Pongracz, J.E. (2011). Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence.
Mech Ageing Dev 132, 249-256 .
10.1016/j.mad.2011.04.007[113] Venanzi, E.S., Gray, D.H., Benoist, C., and Mathis, D. (2007). Lymphotoxin pathway and Aire infl uences on thymic medullary epithelial cells are unconnected.
J Immunol 179, 5693-5700 .
[114] Viret, C., Leung-Theung-Long, S., Serre, L., Lamare, C., Vignali, D.A., Malissen, B., Carrier, A., and Guerder, S. (2011). Thymus-specifi c serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice.
J Clin Invest 121, 1810-1821 .
10.1172/JCI43314[115] Wang, X., Laan, M., Bichele, R., Kisand, K., Scott, H.S., and Peterson, P. (2012). Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specifi c autoantigens.
Front Immunol 3, 19.
10.3389/fimmu.2012.00019[116] Weber, S., Niessen, M.T., Prox, J., Lullmann-Rauch, R., Schmitz, A., Schwanbeck, R., Blobel, C.P., Jorissen, E., de Strooper, B., Niessen, C.M.,
. (2011). The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.
Development 138, 495-505 .
10.1242/dev.055210[117] Weih, F., Carrasco, D., Durham, S.K., Barton, D.S., Rizzo, C.A., Ryseck, R.P., Lira, S.A., and Bravo, R. (1995). Multiorgan infl ammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family.
Cell 80, 331-340 .
10.1016/0092-8674(95)90416-6[118] Wendling, O., Dennefeld, C., Chambon, P., and Mark, M. (2000). Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches.
Development 127, 1553-1562 .
[119] West, K.P., Jr., Howard, G.R., and Sommer, A. (1989). Vitamin A and infection: public health implications.
Annu Rev Nutr 9, 63-86 .
10.1146/annurev.nu.09.070189.000431[120] White, A.J., Nakamura, K., Jenkinson, W.E., Saini, M., Sinclair, C., Seddon, B., Narendran, P., Pfeffer, K., Nitta, T., Takahama, Y.,
. (2010). Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells.
J Immunol 185, 4769-4776 .
10.4049/jimmunol.1002151[121] Wodarz, A., and Nusse, R. (1998). Mechanisms of Wnt signaling in development.
Annu Rev Cell Dev Biol 14, 59-88 .
10.1146/annurev.cellbio.14.1.59[122] Xia, J., Wang, H., Guo, J., Zhang, Z., Coder, B., and Su, D.M. (2012). Age-related disruption of steady-state thymic medulla provokes autoimmune phenotype via perturbing negative selection.
Aging Dis 3, 248-259 .
[123] Yano, M., Kuroda, N., Han, H., Meguro-Horike, M., Nishikawa, Y., Kiyonari, H., Maemura, K., Yanagawa, Y., Obata, K., Takahashi, S.,
. (2008). Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance.
J Exp Med 205, 2827-2838 .
10.1084/jem.20080046[124] Zhang, B., Wang, Z., Ding, J., Peterson, P., Gunning, W.T., and Ding, H.F. (2006). NF-kappaB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells.
J Biol Chem 281, 38617-38624 .
10.1074/jbc.M606705200[125] Zhang, L., Sun, L., and Zhao, Y. (2007). Thymic epithelial progenitor cells and thymus regeneration: an update.
Cell Res 17, 50-55 .
10.1038/sj.cr.7310114[126] Zhu, M., Brown, N.K., and Fu, Y.X. (2010). Direct and indirect roles of the LTbetaR pathway in central tolerance induction.
Trends Immunol 31, 325-331 .
10.1016/j.it.2010.06.005[127] Zhu, M., Chin, R.K., Christiansen, P.A., Lo, J.C., Liu, X., Ware, C., Siebenlist, U., and Fu, Y.X. (2006). NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway.
J Clin Invest 116, 2964-2971 .
10.1172/JCI28326[128] Zhu, M., and Fu, Y. (2010). The complicated role of NF-kappaB in T-cell selection.
Cell Mol Immunol 7, 89-93 .
10.1038/cmi.2009.112[129] Zook, E.C., Krishack, P.A., Zhang, S., Zeleznik-Le, N.J., Firulli, A.B., Witte, P.L., and Le, P.T. (2011). Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells.
Blood 118, 5723-5731 .
10.1182/blood-2011-03-342097[130] Zuklys, S., Mayer, C.E., Zhanybekova, S., Stefanski, H.E., Nusspaumer, G., Gill, J., Barthlott, T., Chappaz, S., Nitta, T., Dooley, J.,
. (2012). MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection.
J Immunol 189, 3894-3904 .
10.4049/jimmunol.1200783