Chrysin promotes osteogenic differentiation via ERK/MAPK activation

Wenfeng Zeng1,2, Yan Yan3, Fayun Zhang1, Chunling Zhang1(), Wei Liang1()

PDF(526 KB)
PDF(526 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (7) : 539-547. DOI: 10.1007/s13238-013-3003-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Chrysin promotes osteogenic differentiation via ERK/MAPK activation

  • Wenfeng Zeng1,2, Yan Yan3, Fayun Zhang1, Chunling Zhang1(), Wei Liang1()
Author information +
History +

Abstract

The effect of the anti-inflammatory flavonoid chrysin on osteogenesis was determined in preosteoblast MC3T3- E1 cells. Results demonstrated that chrysin could induce osteogenic differentiation in the absence of other osteogenic agents. Chrysin treatment promoted the expression of transcription factors (Runx2 and Osx) and bone formation marker genes (Col1A1, OCN, and OPN) as well as enhanced the formation of mineralized nodules. During osteogenic differentiation, chrysin preferentially activated ERK1/2, but not JNK nor the p38 MAPKs. Further experiments with inhibitors revealed the co-treatment of U0126, PD98059, or ICI182780 (a general ER antagonist) with chrysin effectively abrogated the chrysin-induced osteogenesis and ERK1/2 activation. Thus, the effect of chrysin on osteogenesis is ERK1/2-dependent and involves ER. Therefore, chrysin has the significant potential to enhance osteogenesis for osteoporosis prevention and treatment.

Keywords

chrysin / osteogenesis / ERK1/2 / estrogen receptor

Cite this article

Download citation ▾
Wenfeng Zeng, Yan Yan, Fayun Zhang, Chunling Zhang, Wei Liang. Chrysin promotes osteogenic differentiation via ERK/MAPK activation. Prot Cell, 2013, 4(7): 539‒547 https://doi.org/10.1007/s13238-013-3003-3

References

[1] Becker , D.J., Kilgore, M.L., and Morrisey, M.A. (2010). The societal burden of osteoporosis. Curr Rheumatol Rep 12, 186-191 .10.1007/s11926-010-0097-y
[2] Celil, A.B., and Campbell, P.G. (2005). BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280, 31353-31359 .10.1074/jbc.M503845200
[3] Chang, L., and Karin, M. (2001). Mammalian MAP kinase signaling cascades. Nature 410, 37-40 .10.1038/35065000
[4] Franceschi, R.T., Ge, C., Xiao, G., Roca, H., and Jiang, D. (2007). Transcriptional regulation of osteoblasts. Ann N Y Acad Sci 1116, 196-207 .10.1196/annals.1402.081
[5] Ge, C. , Xiao, G., Jiang, D., and Franceschi, R.T. (2007). Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176, 709-718 .10.1083/jcb.200610046
[6] Ha, S. K., Moon, E., and Kim, S.Y. (2010). Chrysin suppresses LPSstimulated proinflammatory responses by blocking NF-kappaB and JNK activations in microglia cells. Neurosci Lett 485, 143-147 .10.1016/j.neulet.2010.08.064
[7] Higuchi, C., Myoui, A., Hashimoto, N., Kuriyama, K., Yoshioka, K., Yoshikawa, H., and Itoh, K. (2002). Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 17, 1785-1794 .10.1359/jbmr.2002.17.10.1785
[8] Hsieh, T.P., Sheu, S.Y., Sun, J.S., and Chen, M.H. (2011). Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-kappaB regulated HIF-1alpha and PGE(2) synthesis. Phytomedicine 18, 176-185 .10.1016/j.phymed.2010.04.003
[9] Hsu, Y .L., and Kuo, P.L. (2008). Diosmetin induces human osteoblastic differentiation through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway. J Bone Miner Res 23, 949-960 .10.1359/jbmr.080219
[10] Jia, T.L., Wang, H.Z., Xie, L.P., Wang, X.Y., and Zhang, R.Q. (2003). Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem Pharmacol 65, 709-715 .10.1016/S0006-2952(02)01585-X
[11] Jungbauer, A., and Medjakovic, S. (2013). Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol . (In Press).10.1016/j.jsbmb.2012.12.009
[12] Kawai, M., Modder, U.I., Khosla, S., and Rosen, C.J. (2011). Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 10, 141-156 .10.1038/nrd3299
[13] Khosla , S., Melton, L.J., 3rd, and Riggs, B.L. (2011). The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26, 441-451 .10.1002/jbmr.262
[14] Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., . (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764 .10.1016/S0092-8674(00)80258-5
[15] Kousteni, S., Bellido, T., Plotkin, L.I., O’Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., . (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719-730 .
[16] Kozawa , O., Hatakeyama, D., and Uematsu, T. (2002). Divergent regulation by p44/p42 MAP kinase and p38 MAP kinase of bone morphogenetic protein-4-stimulated osteocalcin synthesis in osteoblasts. J Cell Biochem 84, 583-589 .10.1002/jcb.10056
[17] Kunath , T., Saba-El-Leil, M.K., Almousailleakh, M., Wray, J., Meloche, S., and Smith, A. (2007). FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895-2902 .10.1242/dev.02880
[18] Lai, C.F., Chaudhary, L., Fausto, A., Halstead, L.R., Ory, D.S., Avioli, L.V., and Cheng, S.L. (2001). Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem 276, 14443-14450 .
[19] Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., and de Crombrugghe, B. (2002). The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17-29 .10.1016/S0092-8674(01)00622-5
[20] Nakayama, K., Tamura, Y., Suzawa, M., Harada, S., Fukumoto, S., Kato, M., Miyazono, K., Rodan, G.A., Takeuchi, Y., and Fujita, T. (2003). Receptor tyrosine kinases inhibit bone morphogenetic protein- Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells. J Bone Miner Res 18, 827-835 .10.1359/jbmr.2003.18.5.827
[21] Penckofer, S.M., Hackbarth, D., and Schwertz, D.W. (2003). Estrogen plus progestin therapy: the cardiovascular risks exceed the benefits. J Cardiovasc Nurs 18, 347-355 .10.1097/00005082-200311000-00005
[22] Pileggi, R., Antony, K., Johnson, K., Zuo, J., and Shannon Holliday, L. (2009). Propolis inhibits osteoclast maturation. Dent Traumatol 25, 584-588 .10.1111/j.1600-9657.2009.00821.x
[23] Rossouw, J.E., Anderson, G.L., Prentice, R.L., LaCroix, A.Z., Kooperberg, C., Stefanick, M.L., Jackson, R.D., Beresford, S.A., Howard, B.V., Johnson, K.C., . (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288, 321-333 .10.1001/jama.288.3.321
[24] Schindeler, A., and Little, D.G. (2006). Ras-MAPK signaling in osteogenic differentiation: friend or foe? J Bone Miner Res 21, 1331-1338 .10.1359/jbmr.060603
[25] Shin, E.K., Kwon, H.S., Kim, Y.H., Shin, H.K., and Kim, J.K. (2009). Chrysin, a natural flavone, improves murine inflammatory bowel diseases. Biochem Biophys Res Commun 381, 502-507 .10.1016/j.bbrc.2009.02.071
[26] Suzawa , M., Takeuchi, Y., Fukumoto, S., Kato, S., Ueno, N., Miyazono, K., Matsumoto, T., and Fujita, T. (1999). Extracellular matrix-asso-ciated bone morphogenetic proteins are essential for differentiation of murine osteoblastic cells in vitro. Endocrinology 140, 2125-2133 .10.1210/en.140.5.2125
[27] Swarnkar, G., Sharan, K., Siddiqui, J.A., Mishra, J.S., Khan, K., Khan, M.P., Gupta, V., Rawat, P., Maurya, R., Dwivedi, A.K., . (2012). A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br J Pharmacol 165, 1526-1542 .10.1111/j.1476-5381.2011.01637.x
[28] Trzeciakiewicz, A., Habauzit, V., Mercier, S., Lebecque, P., Davicco, M.J., Coxam, V., Demigne, C., and Horcajada, M.N. (2010). Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. J Nutr Biochem 21, 424-431 .10.1016/j.jnutbio.2009.01.017
[29] Weng, M.S., Ho, Y.S., and Lin, J.K. (2005). Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol 69, 1815-1827 .10.1016/j.bcp.2005.03.011
[30] Woo, K .J., Jeong, Y.J., Park, J.W., and Kwon, T.K. (2004). Chrysin- induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem Biophys Res Commun 325, 1215-1222 .10.1016/j.bbrc.2004.09.225
[31] Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M.D., and Franceschi, R.T. (2002). Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 17, 101-110 .10.1359/jbmr.2002.17.1.101
[32] Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G., and Franceschi, R.T. (2000). MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275, 4453-4459 .10.1074/jbc.275.6.4453
[33] Zhao, J., Ohba, S., Shinkai, M., Chung, U.I., and Nagamune, T. (2008). Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 369, 444-448 .10.1016/j.bbrc.2008.02.054
AI Summary AI Mindmap
PDF(526 KB)

Accesses

Citations

Detail

Sections
Recommended

/