How will telomeric complex be further contributed to our longevity? — The potential novel biomarkers of telomere complex counteracting both aging and cancer

Yiming Lu1, Bohua Wei1, Tao Zhang2, Zi Chen3(), Jing Ye1,4()

PDF(714 KB)
PDF(714 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (8) : 573-581. DOI: 10.1007/s13238-013-3002-4
REVIEW
REVIEW

How will telomeric complex be further contributed to our longevity? — The potential novel biomarkers of telomere complex counteracting both aging and cancer

  • Yiming Lu1, Bohua Wei1, Tao Zhang2, Zi Chen3(), Jing Ye1,4()
Author information +
History +

Abstract

With the smooth move towards the coming expected clinical reports of anticancer pharmaceutical molecules targeting telomeres and telomerase, and also with the exciting success in the extension of lifespan by regulating telomerase activity without increased onset of oncogenesis in laboratory mouse models (Garcia-Cao et al., 2006; Jaskelioff et al., 2011), we are convinced that targeting telomeres based on telomerase will be a potential approach to conquer both aging and cancer and the idea of longevity seems to be no more mysterious. More interestingly, emerging evidences from clinical research reveal that other telomeric factors, like specifi c telomeric binding proteins and nonspecific telomere associated proteins also show crucial importance in aging and oncogenesis. This stems from their roles in the stability of telomere structure and in the inhibition of DNA damage response at telomeres. Uncapping these proteins from chromosome ends leads to dramatic telomere loss and telomere dysfunction which is more abrupt than those induced by telomerase inactivation. Abnormal expression of these factors results in developmental failure, aging and even oncogenesis evidenced by several experimental models and clinical cases, indicating telomere specifi c proteins and its associated proteins have complimentary roles to telomerase in telomere protection and controlling cellular fate. Thus, these telomeric factors might be potential clinical biomarkers for early detection or even therapeutic targets of aging and cancer. Future studies to elucidate how these proteins function in telomere protection might benefit patients suffering aging or cancer who are not sensitive to telomerase mediation.

Keywords

telomere / telomerase / oncogenesis / senescence / telomere binding protein

Cite this article

Download citation ▾
Yiming Lu, Bohua Wei, Tao Zhang, Zi Chen, Jing Ye. How will telomeric complex be further contributed to our longevity? — The potential novel biomarkers of telomere complex counteracting both aging and cancer. Prot Cell, 2013, 4(8): 573‒581 https://doi.org/10.1007/s13238-013-3002-4

References

[1] Akhter, S., Lam, Y.C., Chang, S., and Legerski, R.J. (2010). The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 9, 1047-1056 .10.1111/j.1474-9726.2010.00631.x
[2] Artandi, S.E., Chang, S., Lee, S.L., Alson, S., Gottlieb, G.J., Chin, L., and DePinho, R.A. (2000). Telomere dysfunction promotes nonreciprocal translocations and epithelial cancers in mice. Nature 406, 641-645 .10.1038/35020592
[3] Bernardes de Jesus, B., and Blasco, M.A. (2011). Aging by telomere loss can be reversed. Cell Stem Cell 8, 3-4 .10.1016/j.stem.2010.12.013
[4] Blanco, R., Munoz, P., Flores, J.M., Klatt, P., and Blasco, M.A. (2007). Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 21, 206-220 .10.1101/gad.406207
[5] Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., De-Pinho, R.A., and Greider, C.W. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25-34 .10.1016/S0092-8674(01)80006-4
[6] Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352 .10.1126/science.279.5349.349
[7] Chin, L., Artandi, S.E., Shen, Q., Tam, A., Lee, S.L., Gottlieb, G.J., Greider, C.W., and DePinho, R.A. (1999). p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527-538 .10.1016/S0092-8674(00)80762-X
[8] d’A dda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N.P., and Jackson, S.P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198 .10.1038/nature02118
[9] de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19, 2100-2110 .10.1101/gad.1346005
[10] Demuth, I., Bradshaw, P.S., Lindner, A., Anders, M., Heinrich, S., Kallenbach, J., Schmelz, K., Digweed, M., Meyn, M.S., and Concannon, P. (2008). Endogenous hSNM1B/Apollo interacts with TRF2 and stimulates ATM in response to ionizing radiation. DNA Repair (Amst) 7, 1192-1201 .10.1016/j.dnarep.2008.03.020
[11] Denchi, E.L., and de Lange, T. (2007). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068-1071 .10.1038/nature06065
[12] Garcia-Cao, I., Garcia-Cao, M., Tomas-Loba, A., Martin-Caballero, J., Flores, J.M., Klatt, P., Blasco, M.A., and Serrano, M. (2006). Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 7, 546-552 .
[13] Gilson, E., and Segal-Bendirdjian, E. (2010). The telomere story or the triumph of an open-minded research. Biochimie 92, 321-326 .10.1016/j.biochi.2009.12.014
[14] Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413 .10.1016/0092-8674(85)90170-9
[15] Griffith, J.D., Comeau, L., Rosenfield, S., Stansel, R.M., Bianchi, A., Moss, H., and de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97, 503-514 .10.1016/S0092-8674(00)80760-6
[16] Gunes, C., and Rudolph, K.L. (2013). The role of telomeres in stem cells and cancer. Cell 152, 390-393 .10.1016/j.cell.2013.01.010
[17] Hockemeyer, D., Palm, W., Wang, R.C., Couto, S.S., and de Lange, T. (2008). Engineered telomere degradation models dyskeratosis congenita. Genes Dev 22, 1773-1785 .10.1101/gad.1679208
[18] Horn, S., Figl, A., Rachakonda, P.S., Fischer, C., Sucker, A., Gast, A., Kadel, S., Moll, I., Nagore, E., Hemminki, K., . (2013). TERT promoter mutations in familial and sporadic melanoma. Science 339, 959-961 .10.1126/science.1230062
[19] Hsu , C.P., Ko, J.L., Shai, S.E., and Lee, L.W. (2007). Modulation of telomere shelterin by TRF1 [corrected] and TRF2 interacts with telomerase to maintain the telomere length in non-small cell lung cancer. Lung Cancer 58, 310-316 .10.1016/j.lungcan.2007.06.019
[20] Huang, F.W., Hodis, E., Xu, M.J., Kryukov, G.V., Chin, L., and Garraway, L.A. (2013). Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957-959 .10.1126/science.1229259
[21] Jaskelioff, M., Muller, F.L., Paik, J.H., Thomas, E., Jiang, S., Adams, A.C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadinanos, J., . (2011).Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102-106 .10.1038/nature09603
[22] Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., and de Lange, T. (1999). p53-and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321-1325 .10.1126/science.283.5406.1321
[23] Karlseder, J., Hoke, K., Mirzoeva, O.K., Bakkenist, C., Kastan, M.B., Petrini, J.H., and de Lange, T. (2004). The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2, E240.10.1371/journal.pbio.0020240
[24] Karlseder, J., Smogorzewska, A., and de Lange, T. (2002). Senescence induced by altered telomere state, not telomere loss. Science 295, 2446-2449 .10.1126/science.1069523
[25] Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015 .10.1126/science.7605428
[26] Lam , Y.C., Akhter, S., Gu, P., Ye, J., Poulet, A., Giraud-Panis, M.J., Bailey, S.M., Gilson, E., Legerski, R.J., and Chang, S. (2010). SNMIB/ Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J 29, 2230-2241 .10.1038/emboj.2010.58
[27] Lee, H.W., Blasco, M.A., Gottlieb, G.J., Horner, J.W., 2nd, Greider, C.W., and DePinho, R.A. (1998). Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569-574 .10.1038/33345
[28] Lenain, C., Bauwens, S., Amiard, S., Brunori, M., Giraud-Panis, M.J., and Gilson, E. (2006). The Apollo 5’exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol 16, 1303-1310 .10.1016/j.cub.2006.05.021
[29] Loayza, D., and De Lange, T. (2003). POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013-1018 .10.1038/nature01688
[30] Martinez, P., Thanasoula, M., Carlos, A.R., Gomez-Lopez, G., Tejera, A.M., Schoeftner, S., Dominguez, O., Pisano, D.G., Tarsounas, M., and Blasco, M.A. (2010). Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 12, 768-780 .10.1038/ncb2081
[31] Martinez, P., Thanasoula, M., Munoz, P., Liao, C., Tejera, A., McNees, C., Flores, J.M., Fernandez-Capetillo, O., Tarsounas, M., and Blasco, M.A. (2009). Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23, 2060-2075 .10.1101/gad.543509
[32] Munoz, P., Blanco, R., de Carcer, G., Schoeftner, S., Benetti, R., Flores, J.M., Malumbres, M., and Blasco, M.A. (2009). TRF1 controls telomere length and mitotic fi delity in epithelial homeostasis. Mol Cell Biol 29, 1608-1625 .10.1128/MCB.01339-08
[33] Munoz, P., Blanco, R., Flores, J.M., and Blasco, M.A. (2005). XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 37, 1063-1071 .10.1038/ng1633
[34] Nandakumar, J., Bell, C.F., Weidenfeld, I., Zaug, A.J., Leinwand, L.A., and Cech, T.R. (2012). The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285-289 .10.1038/nature11648
[35] Natrajan, R., Williams, R.D., Grigoriadis, A., Mackay, A., Fenwick, K., Ashworth, A., Dome, J.S., Grundy, P.E., Pritchard-Jones, K., and Jones, C. (2007). Delineation of a 1Mb breakpoint region at 1p13 in Wilms tumors by fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 46, 607-615 .10.1002/gcc.20446
[36] Ning, H., Li, T., Zhao, L., Li, T., Li, J., Liu, J., Liu, Z., and Fan, D. (2006). TRF2 promotes multidrug resistance in gastric cancer cells. Cancer Biol Ther 5, 950-956 .10.4161/cbt.5.8.2877
[37] Palm, W., and de Lange, T. (2008). How shelterin protects mammalian telomeres. Annu Rev Genet 42, 301-334 .10.1146/annurev.genet.41.110306.130350
[38] Rudolph, K.L., Chang, S., Lee, H.W., Blasco, M., Gottlieb, G.J., Greider, C., and DePinho, R.A. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701-712 .10.1016/S0092-8674(00)80580-2
[39] Sasa, G., Ribes-Zamora, A., Nelson, N., and Bertuch, A. (2012). Three novel truncating TINF2 mutations causing severe dyskeratosis congenital in early childhood. Clin Genet, 81, 470-478 .10.1111/j.1399-0004.2011.01658.x
[40] Schlapbach, C., Yerly, D., Daubner, B., Yawalkar, N., and Hunger, R.E. (2011). Telomerase-specific GV1001 peptide vaccination fails to induce objective tumor response in patients with cutaneous T cell lymphoma. J Dermatol Sci 62, 75-83 .10.1016/j.jdermsci.2011.02.001
[41] Schoeftner, S., and Blasco, M.A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10, 228-236 .10.1038/ncb1685
[42] Seger, Y.R., Garcia-Cao, M., Piccinin, S., Cunsolo, C.L., Doglioni, C., Blasco, M.A., Hannon, G.J., and Maestro, R. (2002). Transformation of normal human cells in the absence of telomerase activation. Cancer Cell 2, 401-413 .10.1016/S1535-6108(02)00183-6
[43] Shaw, V.E., Naisbitt, D.J., Costello, E., Greenhalf, W., Park, B.K., Neoptolemos, J.P., and Middleton, G.W. (2010). Current status of GV1001 and other telomerase vaccination strategies in the treatment of cancer. Expert Rev Vaccines 9, 1007-1016 .10.1586/erv.10.92
[44] Shay, J.W., and Wright, W.E. (2004). Telomeres in dyskeratosis congenita. Nat Genet 36, 437-438 .10.1038/ng0504-437
[45] Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A., and de Lange, T. (2002). DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12, 1635-1644 .10.1016/S0960-9822(02)01179-X
[46] Stansel, R.M., de Lange, T., and Griffith, J.D. (2001). T-loop assembly in vitro involves binding of TRF2 near the 3’telomeric overhang. EMBOJ 20, 5532-5540 .10.1093/emboj/20.19.5532
[47] Touzot, F., Callebaut, I., Soulier, J., Gaillard, L., Azerrad, C., Durandy, A., Fischer, A., de Villartay, J.P., and Revy, P. (2010). Function of Apollo (SNM1B) at telomere highlighted by a splice variant identifi ed in a patient with Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci USA 107, 10097-10102 .10.1073/pnas.0914918107
[48] van Overbeek, M., and de Lange, T. (2006). Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol 16, 1295-1302 .10.1016/j.cub.2006.05.022
[49] van Steensel, B., Smogorzewska, A., and de Lange, T. (1998). TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401-413 .10.1016/S0092-8674(00)80932-0
[50] Walne, A.J., Vulliamy, T., Beswick, R., Kirwan, M., and Dokal, I. (2008). TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594-3600 .10.1182/blood-2008-05-153445
[51] Wang, F., Podell, E.R., Zaug, A.J., Yang, Y., Baciu, P., Cech, T.R., and Lei, M. (2007). The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506-510 .10.1038/nature05454
[52] Wang, R.C., Smogorzewska, A., and de Lange, T. (2004). Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355-368 .10.1016/j.cell.2004.10.011
[53] Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W., and Shay, J.W. (1996). Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18, 173-179 .10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3
[54] Wright, W.E., Shay, J.W., and Piatyszek, M.A. (1995). Modifications of a telomeric repeat amplifi cation protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res 23, 3794-3795 .10.1093/nar/23.18.3794
[55] Wu, P., Takai, H., and de Lange, T. (2012). Telomeric 3’overhangs derive from resection by Exo1 and Apollo and fill-in by POT1bassociated CST. Cell 150, 39-52 .10.1016/j.cell.2012.05.026
[56] Wu, P., van Overbeek, M., Rooney, S., and de Lange, T. (2010). Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol Cell 39, 606-617 .10.1016/j.molcel.2010.06.031
[57] Xin , H., Liu, D., and Songyang, Z. (2008). The telosome/shelterin complex and its functions. Genome Biol 9, 232.10.1186/gb-2008-9-9-232
[58] Ye, J., Lenain, C., Bauwens, S., Rizzo, A., Saint-Leger, A., Poulet, A., Benarroch, D., Magdinier, F., Morere, J., Amiard, S., . (2010a). TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 142, 230-242 .10.1016/j.cell.2010.05.032
[59] Ye, J., Wu, Y., and Gilson, E. (2010b). Dynamics of telomeric chromatin at the crossroads of aging and cancer. Essays Biochem 48, 147-164 .10.1042/bse0480147
AI Summary AI Mindmap
PDF(714 KB)

Accesses

Citations

Detail

Sections
Recommended

/