Nuclear microRNAs and their unconventional role in regulating non-coding RNAs

Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang(), Xi Chen()

PDF(336 KB)
PDF(336 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (5) : 325-330. DOI: 10.1007/s13238-013-3001-5
M INI-REVIEW
M INI-REVIEW

Nuclear microRNAs and their unconventional role in regulating non-coding RNAs

  • Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang(), Xi Chen()
Author information +
History +

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that are involved in post-transcriptional gene regulation. It has long been assumed that miRNAs exert their roles only in the cytoplasm, where they recognize their target protein-coding messenger RNAs (mRNAs), and result in translational repression or target mRNA degradation. Recent studies, however, have revealed that mature miRNAs can also be transported from the cytoplasm to the nucleus and that these nuclear miRNAs can function in an unconventional manner to regulate the biogenesis and functions of ncRNAs (including miRNAs and long ncRNAs), adding a new layer of complexity to our understanding of gene regulation. In this review, we summarize recent literature on the working model of these unconventional miRNAs and speculate on their biological significance. We have every reason to believe that these novel models of miRNA function will become a major research topic in gene regulation in eukaryotes.

Keywords

microRNA / nuclear microRNA / non-coding RNA / nucleus / Argonaute / Exportin / Importin

Cite this article

Download citation ▾
Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Xi Chen. Nuclear microRNAs and their unconventional role in regulating non-coding RNAs. Prot Cell, 2013, 4(5): 325‒330 https://doi.org/10.1007/s13238-013-3001-5

References

[1] Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355 .10.1038/nature02871
[2] Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 .10.1016/S0092-8674(04)00045-5
[3] Braconi, C., Kogure, T., Valeri, N., Huang, N., Nuovo, G., Costinean, S., Negrini, M., Miotto, E., Croce, C.M., and Patel, T. (2011). micro- RNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30, 4750-4756 .10.1038/onc.2011.193
[4] Castanotto, D., Lingeman, R., Riggs, A.D., and Rossi, J.J. (2009). CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci U S A 106, 21655-21659 .10.1073/pnas.0912384106
[5] Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269 .10.1038/nrc1840
[6] Foldes-Papp, Z., Konig, K., Studier, H., Buckle, R., Breunig, H.G., Uchugonova, A., and Kostner, G. M. (2009). Traffi cking of mature miRNA-122 into the nucleus of live liver cells. Curr Pharm Biotechnol 10, 569-578 .10.2174/138920109789069332
[7] Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J., and Kjems, J. (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30, 4414-4422 .10.1038/emboj.2011.359
[8] Hwang, H.W., Wentzel, E.A., and Mendell, J.T. (2007). A hexanucleotide element directs microRNA nuclear import. Science 315, 97-100 .10.1126/science.1136235
[9] Jeffries, C.D., Fried, H.M., and Perkins, D.O. (2011). Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17, 675-686 .10.1261/rna.2006511
[10] Katahira, J., and Yoneda, Y. (2011). Nucleocytoplasmic transport of microRNAs and related small RNAs. Traffi c 12, 1468-1474 .10.1111/j.1600-0854.2011.01211.x
[11] Kohler, A., and Hurt, E. (2007). Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8, 761-773 .10.1038/nrm2255
[12] Lee, S.J., Jiko, C., Yamashita, E., and Tsukihara, T. (2011). Selective nuclear export mechanism of small RNAs. Curr Opin Struct Biol 21, 101-108 .10.1016/j.sbi.2010.11.004
[13] Liao, J.Y., Ma, L.M., Guo, Y.H., Zhang, Y.C., Zhou, H., Shao, P., Chen, Y.Q., and Qu, L.H. (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3’ trailers. PLoS One 5, e10563.10.1371/journal.pone.0010563
[14] Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185-197 .10.1016/j.molcel.2004.07.007
[15] Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet 10, 155-159 .10.1038/nrg2521
[16] Politz, J.C., Zhang, F., and Pederson, T. (2006). MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci U S A 103, 18957-18962 .10.1073/pnas.0609466103
[17] Robb, G.B., Brown, K.M., Khurana, J., and Rana, T.M. (2005). Specifi cand potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12, 133-137 .10.1038/nsmb886
[18] Sylvestre, Y., De Guire, V., Querido, E., Mukhopadhyay, U.K., Bourdeau, V., Major, F., Ferbeyre, G., and Chartrand, P. (2007). An E2F/ miR-20a autoregulatory feedback loop. J Biol Chem 282, 2135-2143 .10.1074/jbc.M608939200
[19] Tang, R., Li, L., Zhu, D., Hou, D., Cao, T., Gu, H., Zhang, J., Chen, J., Zhang, C.Y., and Zen, K. (2012). Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22, 504-515 .10.1038/cr.2011.137
[20] Tang, X., Tang, G., and Ozcan, S. (2008). Role of microRNAs in diabetes. Biochim Biophys Acta 1779, 697-701 .10.1016/j.bbagrm.2008.06.010
[21] van Rooij, E., and Olson, E.N. (2007). MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117, 2369-2376 .10.1172/JCI33099
[22] Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187-1197 .10.1101/gad.1201404
[23] Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H., and Meister, G. (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496-507 .10.1016/j.cell.2008.12.023
[24] Zhao, Y., He, S., Liu, C., Ru, S., Zhao, H., Yang, Z., Yang, P., Yuan, X., Sun, S., Bu, D., . (2008). MicroRNA regulation of messengerlike noncoding RNAs: a network of mutual microRNA control. Trends Genet 24, 323-327 .10.1016/j.tig.2008.04.004
[25] Zisoulis, D.G., Kai, Z.S., Chang, R.K., and Pasquinelli, A.E. (2012). Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486, 541-544 .
AI Summary AI Mindmap
PDF(336 KB)

Accesses

Citations

Detail

Sections
Recommended

/