Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations

Yi Lu1,2, Taijiao Jiang1()

PDF(576 KB)
PDF(576 KB)
Protein Cell ›› DOI: 10.1007/s13238-013-2125-y
COMMUNICATION

Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations

  • Yi Lu1,2, Taijiao Jiang1()
Author information +
History +

Abstract

The use of antiviral drugs such as influenza neuraminidase (NA) inhibitors is a critical strategy to prevent and control flu pandemic, but this strategy faces the challenge of emerging drug-resistant strains. F or a highly pathogenic avian influenza (HPAI) H5N1 virus, biosafety restrictions have significantly limited the efforts to monitor its drug responses and mechanisms involved. In this study, a rapid and biosafe assay based on NA pseudovirus was developed to study the resistance of HPAI H5N1 virus to NA inhibitor drugs. The H5N1 NA pseudovirus was comprehensively tested using oseltamivir-sensitive strains and their resistant mutants. Results were consistent with those in previous studies, in which live H5N1 viruses were used. Several oseltamivir-resistant mutations reported in human H1N1 were also identifi ed to cause decreased oseltamivir sensitivity in H5N1 NA by using the H5N1 NA pseudovirus. Thus, H5N1 NA pseudoviruses could be used to monitor HPAI H5N1 drug resistance rapidly and safely.

Keywords

influenza virus / H5N1 / neuraminidase inhibitor / drug resistance / pseudovirus

Cite this article

Download citation ▾
Yi Lu, Taijiao Jiang. Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations. Prot Cell, https://doi.org/10.1007/s13238-013-2125-y

References

[1] Abed, Y., Baz, M., and Boivin, G. (2006). Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic backgrounds. Antivir Ther 11, 971-976 .
[2] Barrett, S., Mohr, P.G., Schmidt, P.M., and McKimm-Breschkin, J.L. (2011). Real time enzyme inhibition assays provide insights into differences in binding of neuraminidase inhibitors to wild type and mutant influenza viruses. PLoS One 6, e23627.10.1371/journal.pone.0023627
[3] Ba vagnoli, L., and Maga, G. (2011). The 2009 influenza pandemic: promising lessons for antiviral therapy for future outbreaks. Current Med Chem 18, 5466-5475 .10.2174/092986711798194397
[4] Bloom, J.D., Gong, L.I., and Baltimore, D. (2010). Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328, 1272-1275 .10.1126/science.1187816
[5] Boivin, G., Pizzorno, A., Bouhy, X., and Abed, Y. (2011). Generation and characterization of recombinant pandemic influenza A(H1N1) viruses resistant to neuraminidase inhibitors. J Infect Dis 203, 25-31 .10.1093/infdis/jiq010
[6] Boltz, D.A., Douangngeun, B., Phommachanh, P., Sinthasak, S., Mondry, R., Obert, C., Seiler, P., Keating, R., Suzuki, Y., Hiramatsu, H., . (2010). Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic. J Gen Virol 91, 949-959 .10.1099/vir.0.017459-0
[7] Deng, Y.M., Caldwell, N., Hurt, A., Shaw, T., Kelso, A., Chidlow, G., Williams, S., Smith, D., and Barr, I. (2011). A comparison of pyrosequencing and neuraminidase inhibition assays for the detection of oseltamivir-resistant pandemic influenza A(H1N1) 2009 viruses. Antiviral Res 90, 87-91 .10.1016/j.antiviral.2011.02.014
[8] Earhart, K.C., Elsayed, N.M., Saad, M.D., Gubareva, L.V., Nayel, A., Deyde, V.M., Abdelsattar, A., Abdelghani, A.S., Boynton, B.R., Mansour, M.M., . (2009). Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. J Infect Public Health 2, 74-80 .10.1016/j.jiph.2009.04.004
[9] Eshaghi, A., Patel, S.N., Sarabia, A., Higgins, R.R., Savchenko, A., Stojios, P.J., Li, Y., Bastien, N., Alexander, D.C., Low, D.E., . (2011). Multidrug-resistant pandemic (H1N1) 2009 infection in immunocompetent child. Emerg Infect Dis 17, 1472-1474 .
[10] Ferraris, O., and Lina, B. (2008). Mutations of neuraminidase implicated in neuraminidase inhibitors resistance. J Clin Virol 41, 13-19 .10.1016/j.jcv.2007.10.020
[11] Garcia, J.M., and Lai, J.C. (2011). Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 9, 443-455 .10.1586/eri.11.25
[12] Gubareva, L.V., Trujillo, A.A., Okomo-Adhiambo, M., Mishin, V.P., Deyde, V.M., Sleeman, K., Nguyen, H.T., Sheu, T.G., Garten, R.J., Shaw, M.W., . (2010). Comprehensive assessment of 2009 pandemic influenza A (H1N1) virus drug susceptibility in vitro. Antivir Ther 15, 1151-1159 .10.3851/IMP1678
[13] Hayden, F.G. (2006). Antiviral resistance in influenza viruses—implications for management and pandemic response. N Engl J Med 354, 785-788 .10.1056/NEJMp068030
[14] Herfst, S., Schrauwen, E.J.A., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V.J., Sorrell, E.M., Bestebroer, T.M., Burke, D.F., Smith, D.J., . (2012). Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science 336, 1534-1541 .10.1126/science.1213362
[15] Hurt, A.C., Holien, J.K., and Barr, I.G. (2009). In vitro generation of neuraminidase inhibitor resistance in A(H5N1) influenza viruses. Antimicrob Agents Chemother 53, 4433-4440 .10.1128/AAC.00334-09
[16] Hurt, A.C., Lee, R.T., Leang, S.K., Cui, L., Deng, Y.M., Phuah, S.P., Caldwell, N., Freeman, K., Komadina, N., Smith, D., . (2011). Increased detection in Australia and Singapore of a novel influenza A(H1N1)2009 variant with reduced oseltamivir and zanamivir sensitivity due to a S247N neuraminidase mutation. Euro Surveill 16.
[17] Ilyushina, N.A., Seiler, J.P., Rehg, J.E., Webster, R.G., Govorkova, E.A., and Fouchier, R.A.M. (2010). Effect of neuraminidase inhibitor- resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets. PLoS Pathogens 6, e1000933.10.1371/journal.ppat.1000933
[18] Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., . (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420-428 .
[19] Kuroda, H., Kutner, R.H., Bazan, N.G., and Reiser, J. (2009). Simpli- fi ed lentivirus vector production in protein-free media using polyethylenimine- mediated transfection. J Virol Methods 157, 113-121 .10.1016/j.jviromet.2008.11.021
[20] Le, M.T., Wertheim, H.F., Nguyen, H.D., Taylor, W., Hoang, P.V., Vuong, C.D., Nguyen, H.L., Nguyen, H.H., Nguyen, T.Q., Nguyen, T.V., . (2008). Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profi le replaced clade 1 virus in humans in northern Vietnam. PLoS One 3, e3339.10.1371/journal.pone.0003339
[21] Le, Q.M., Kiso, M., Someya, K., Sakai, Y.T., Nguyen, T.H., Nguyen, K.H., Pham, N.D., Ngyen, H.H., Yamada, S., Muramoto, Y., . (2005). Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108.10.1038/4371108a
[22] Legoff, J., Rousset, D., Abou-Jaoude, G., Scemla, A., Ribaud, P., Mercier-Delarue, S., Caro, V., Enouf, V., Simon, F., Molina, J.M., . (2012). I223R mutation in influenza A(H1N1)pdm09 neuraminidase confers reduced susceptibility to oseltamivir and zanamivir and enhanced resistance with H275Y. PLoS One 7, e37095.10.1371/journal.pone.0037095
[23] Mc Kimm-Breschkin, J.L., Selleck, P.W., Usman, T.B., and Johnson, M.A. (2007). Reduced sensitivity of influenza A (H5N1) to oseltamivir. Emerg Infect Dis 13, 1354-1357 .10.3201/eid1309.07-0164
[24] Monto, A.S. (2003). The role of antivirals in the control of influenza. Vaccine 21, 1796-1800 .10.1016/S0264-410X(03)00075-6
[25] Nguyen, H.T., Fry, A.M., and Gubareva, L.V. (2012). Neuraminidase inhibitor resistance in influenza viruses and laboratory testing methods. Antivir Ther 17, 159-173 .10.3851/IMP2067
[26] Nguyen, H.T., Fry, A.M., Loveless, P.A., Klimov, A.I., and Gubareva, L.V. (2010). Recovery of a multidrug-resistant strain of pandemic influenza A 2009 (H1N1) virus carrying a dual H275Y/I223R mutation from a child after prolonged treatment with oseltamivir. Clin Infect Dis 51, 983-984 .10.1086/656439
[27] Nguyen, H.T., Sheu, T.G., Mishin, V.P., Klimov, A.I., and Gubareva, L.V. (2010b). Assessment of pandemic and seasonal influenza A (H1N1) virus susceptibility to neuraminidase inhibitors in three enzyme activity inhibition assays. Antimicrob Agents Chemother 54, 3671-3677 .10.1128/AAC.00581-10
[28] Peiris, J.S.M., de Jong, M.D., and Guan, Y. (2007). Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20, 243-267 .10.1128/CMR.00037-06
[29] Perez, D.R. (2012). Public health and biosecurity. H5N1 debates: hung up on the wrong questions. Science 335, 799-801 .10.1126/science.1219066
[30] Potier, M., Mameli, L., Belisle, M., Dallaire, L., and Melancon, S.B. (1979). Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem 94, 287-296 .10.1016/0003-2697(79)90362-2
[31] Schmidt, P.M., Attwood, R.M., Mohr, P.G., Barrett, S.A., and McKimm-Breschkin, J.L. (2011). A generic system for the expression and purify cation of soluble and stable influenza neuraminidase. PLoS One 6, e16284.10.1371/journal.pone.0016284
[32] Sheu, T.G., Deyde, V.M., Okomo-Adhiambo, M., Garten, R.J., Xu, X., Bright, R.A., Butler, E.N., Wallis, T.R., Klimov, A.I., and Gubareva, L.V. (2008). Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52, 3284-3292 .10.1128/AAC.00555-08
[33] Su, C.Y., Wang, S.Y., Shie, J.J., Jeng, K.S., Temperton, N.J., Fang, J.M., Wong, C.H., and Cheng, Y.S.E. (2008). In vitro evaluation of neuraminidase inhibitors using the neuraminidase-dependent release assay of hemagglutinin-pseudotyped viruses. Antiviral Res 79, 199-205 .10.1016/j.antiviral.2008.03.002
[34] Tisoncik, J.R., Guo, Y., Cordero, K., Yu, J., Wang, J., Cao, Y., and Rong, L. (2011). Identifi cation of critical residues of influenza neuraminidase in viral particle release. Virol J 8, 14.10.1186/1743-422X-8-14
[35] van der Vries, E., Stelma, F.F., and Boucher, C.A. (2010). Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med 363, 1381-1382 .10.1056/NEJMc1003749
[36] van der Vries, E., Veldhuis Kroeze, E.J., Stittelaar, K.J., Linster, M., Van der Linden, A., Schrauwen, E.J., Leijten, L.M., van Amerongen, G., Schutten, M., Kuiken, T., . (2011). Multidrug resistant 2009 A/H1N1 influenza clinical isolate with a neuraminidase I223R mutation retains its virulence and transmissibility in ferrets. PLoS Pathog 7, e1002276.10.1371/journal.ppat.1002276
[37] Wa gner, R., Matrosovich, M., and Klenk, H.D. (2002). Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12, 159-166 .10.1002/rmv.352
[38] WH O Cumulative number of confi rmed human cases of avian infl uenza A(H5N1) reported to WHO, http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html.
[39] Xu, X., Subbarao, Cox, N.J., and Guo, Y. (1999). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261, 15-19 .10.1006/viro.1999.9820
[40] Yen, H.L., Hoffmann, E., Taylor, G., Scholtissek, C., Monto, A.S., Webster, R.G., and Govorkova, E.A. (2006). Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J Virol 80, 8787-8795 .10.1128/JVI.00477-06
[41] Yen, H.L., Ilyushina, N.A., Salomon, R., Hoffmann, E., Webster, R.G., and Govorkova, E.A. (2007). Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication effi ciency and pathogenicity in vitro and in vivo. J Virol 81, 12418-12426 .10.1128/JVI.01067-07
[42] Zhang, Y.H., Lin, X.J., Wang, G.Q., Zhou, J.F., Lu, J., Zhao, H.L., Zhang, F.W., Wu, J., Xu, C.Q., Du, N., . (2010). Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses. PLoS One 5, e9167.10.1371/journal.pone.0009167
AI Summary AI Mindmap
PDF(576 KB)

Accesses

Citations

Detail

Sections
Recommended

/