Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells

Shahina Akhter1, Md. Mashiar Rahman1, Hyun Seo Lee1, Hyeon-Jin Kim2, Seong-Tshool Hong1()

PDF(1036 KB)
PDF(1036 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (3) : 220-230. DOI: 10.1007/s13238-013-2066-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells

  • Shahina Akhter1, Md. Mashiar Rahman1, Hyun Seo Lee1, Hyeon-Jin Kim2, Seong-Tshool Hong1()
Author information +
History +

Abstract

Recent advances in hematopoietic stem cells (HSCs) expansion by growth factors including angiopoietin-like proteins (Angptls) have opened up the possibility to use HSCs in regenerative medicine. However, the unavailability of true in vitro HSCs expansion by these growth factors has limited the understanding of the cellular and molecular mechanism of HSCs expansion. Here, we report the functional role of mouse Angptls 1, 2, 3, 4, 6 and 7 and growth factors SCF, TPO, IGF-2 and FGF-1 on purified mouse bone-marrow (BM) Lineage-Sca-1+(Lin-Sca-1+) HSCs. The recombinant retroviral transduced- CHO-S cells that secrete Angptls in serum-free medium were used alone or in combination with growth factors (SCF, TPO, IGF-2 and FGF-1). None of the Angptls stimulated HSC proliferation, enhanced or inhibited HSCs colony formation, but they did support the survival of HSCs. By contrast, any of the six Angptls together with saturating levels of growth factors dramatically stimulated a 3- to 4.5-fold net expansion of HSCs compared to stimulation with a combination of those growth factors alone. These findings lead to an understanding of the basic function of Angptls on signaling pathways for the survival as well as expansion of HSCs in the bone marrow niche.

Keywords

hematopoietic stem cells / angiopoietin-like proteins / growth factors / survival / ex vivo expansion / cell culture

Cite this article

Download citation ▾
Shahina Akhter, Md. Mashiar Rahman, Hyun Seo Lee, Hyeon-Jin Kim, Seong-Tshool Hong. Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells. Prot Cell, 2013, 4(3): 220‒230 https://doi.org/10.1007/s13238-013-2066-5

References

[1] Antonchuk, J., Sauvageau, G., and Humphries, R.K. (2002). HOXB4- induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39-45 .10.1016/S0092-8674(02)00697-9
[2] Araki, H., Yoshinaga, K., Boccuni, P., Zhao, Y., Hoffman, R., and Mahmud, N. (2007). Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 109, 3570-3578 .10.1182/blood-2006-07-035287
[3] Atala. (2009). Engineering organs. Curr Opin Biotechnol 20, 575-592 .10.1016/j.copbio.2009.10.003
[4] Bryder, D., Rossi, D.J., and Weissman, I.L. (2006). Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169, 338-346 .10.2353/ajpath.2006.060312
[5] Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C.C., Veres, G., Schmidt, M., Kutschera, I., Vidaud, M., Abel, U. (2009). Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818-823 10.1126/science.1171242
[6] Chatterjee, S., Basak, P., Das, P., Das, M., Pereira, J.A., Dutta, R.K., Chaklader, M., Chaudhuri, S., and Law, S. (2010). Primitive Sca-1 positive bone marrow HSC in mouse model of aplastic anemia: a comparative study through flowcytometric analysis and scanning electron microscopy. Stem Cells Int 2010 ,10.4061/2010/614395.10.4061/2010/614395
[7] Christensen, J.L., and Weissman, I.L. (2001). Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 98, 14541-14546 .10.1073/pnas.261562798
[8] Douay, L., and Giarratana, M.C. (2009). Ex vivo generation of human red blood cells: a new advance in stem cell engineering. Methods Mol Biol 482, 127-140 .10.1007/978-1-59745-060-7_8
[9] Ema, H., Takano, H., Sudo, K., and Nakauchi, H. (2000). In vitro selfrenewal division of hematopoietic stem cells. J Exp Med 192, 1281-1288 .10.1084/jem.192.9.1281
[10] Essers, M.A., Offner, S., Blanco-Bose, W.E., Waibler, Z., Kalinke, U., Duchosal, M.A., and Trumpp, A. (2009). IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904-908 .10.1038/nature07815
[11] Giarratana, M.A., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., Marden, M.C., Wajcman, H., and Douay, L. (2005). Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23, 69-74 .10.1038/nbt1047
[12] Gilner, J.B., Walton, W.G., Gush, K., and Kirby, S.L. (2007). Antibodies to stem cell marker antigens reduce engraftment of hematopoietic stem cells. Stem Cells 25, 279-288 .10.1634/stemcells.2006-0076
[13] Haylock, D.N., Williams, B., Johnston, H.M., Liu, M.C., Rutherford, K.E., Whitty, G.A., Simmons, P.J., Bertoncello, I., and Nilssona, S.K. (2007). Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25, 1062-1069 .10.1634/stemcells.2006-0528
[14] Huynh, H.D., Iizuka, S., Kaba, M., Kirak, O., Zheng, J., Lodish, H.F., and Zhang, C.C. (2008). Insulin-like growth factor-binding protein 2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 26, 1628-1635 .10.1634/stemcells.2008-0064
[15] Ito, Y., Oike, Y., Yasunaga, K., Hamada, K., Miyata, K., Matsumoto, S., Sugano, S., Tanihara, H., Masuho, Y., Suda, T., . (2003). Inhibition of angiogenesis and vascular leakiness by angiopoietin related protein 4. Cancer Res 63, 6651-6657 .
[16] Krosl, J., Austin, P., Beslu, N., Kroon, E., Humphries, R.K., and Sauvageau, G. (2003). In vitro expansion of hematopoietic stem cells by recombinant TATHOXB4 protein. Nat Med 9, 1428-1432 .10.1038/nm951
[17] Oike, Y., Akao, M., Kubota, Y., and Suda, T. (2005). Angiopoietinlike proteins: Potential new targets for metabolic syndrome therapy. Trends Mol Med 11, 473-479 .10.1016/j.molmed.2005.08.002
[18] Oike, Y., Ito, Y., Maekawa, H., Morisada, T., Kubota, Y., Akao, M., Urano, T., Yasunaga, K., and Suda, T. (2004). Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood 103, 3760-3765 .10.1182/blood-2003-04-1272
[19] Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y., and Suda, T. (1992). In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044-3050 .
[20] Ono, M., Shimizugawa, T., Shimamura, M., Yoshida, K., Noji-Sakikawa, C., Ando, Y., Koishi, R., and Furukawa, H. (2003). Protein region important for regulation of lipid metabolism in angiopoietinlike 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J Biol Chem 278, 41804-41809 .10.1074/jbc.M302861200
[21] Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Longterm lymphohematopoietic reconstitution by a single CD34-low/ negative hematopoietic stem cell. Science 273, 242-245 .10.1126/science.273.5272.242
[22] Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willertk, K., Hintz, L., Nussek, R., and Weissman, I.L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409-414 .10.1038/nature01593
[23] Shimizugawa, T., Ono, M., Shimamura, M., Yoshida, K., Ando, Y., Koishi, R., Ueda, K., Inaba, T., Minekura, H., Kohama, T., . (2002). ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 277, 33742-33748 .10.1074/jbc.M203215200
[24] Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purifi cation and characterization of mouse hematopoietic stem cells. Science 241, 58-62 .10.1126/science.2898810
[25] Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W.S., and Bernstein, I.D. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6, 1278-1281 .10.1038/81390
[26] Verma, I.M., and Weitzman, M.D. (2005). Gene therapy: Twenty-fi rst century medicine. Annu Rev Biochem 74, 711-738 .10.1146/annurev.biochem.74.050304.091637
[27] Weekx, S.F.A., Snoeck, H.W., Offner, F., Smedt, M.D., Bockstaele, D.R.V., Nijs, G., Lenjou, M., Moulijn, A., Rodrigus, I., Berneman, Z.N., . (2000). Generation of T cells from adult human hematopoietic stem cells and progenitors in a fetal thymic organ culture system: stimulation by tumor necrosis factor-α. Blood 95, 2806-2812 .
[28] Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., and Nusse, R. (2003). Wnt proteins are lipid-modifi ed and can act as stem cell growth factors. Nature 423, 448-452 .10.1038/nature01611
[29] Wilson, A., Laurenti, E., Oser, G., van der Wath, R.C., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C.F., Eshkind, L., Bockamp, E., . (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118-1129 .10.1016/j.cell.2008.10.048
[30] Zhang, C.C., Kaba M., Ge, G., Xie, K., Tong, W., Hug, C., and Lodish, H.F. (2006). Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12, 240-245 .10.1038/nm1342
[31] Zhang, C.C,Kaba, M., Iizuka, S., Huynh, H.D., and Lodish, H.F. (2008). Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/ SCID transplantation. Blood 111, 3415-3423 .10.1182/blood-2007-11-122119
[32] Zhang, C.C, and Lodish, H.F. (2005). Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105, 4314-4320 .10.1182/blood-2004-11-4418
[33] Zheng, J., Huynh, H.D., Umikawa, M., Silvany, R., and Zhang, C.C. (2011). Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117, 470-479 .10.1182/blood-2010-06-291716
AI Summary AI Mindmap
PDF(1036 KB)

Accesses

Citations

Detail

Sections
Recommended

/