Micro-management of pluripotent stem cells
Wen-Ting Guo, Xi-Wen Wang, Yangming Wang
Micro-management of pluripotent stem cells
Embryonic and induced pluripotent stem cells (ESCs and iPSCs) hold great promise for regenerative medicine. The therapeutic application of these cells requires an understanding of the molecular networks that regulate pluripotency, differentiation, and de-differentiation. Along with signaling pathways, transcription factors, and epigenetic regulators, microRNAs (miRNAs) are emerging as important regulators in the establishment and maintenance of pluripotency. These tiny RNAs control proliferation, survival, the cell cycle, and the pluripotency program of ESCs. In addition, they serve as barriers or factors to overcome barriers during the reprogramming process. Systematic screening for novel miRNAs that regulate the establishment and maintenance of pluripotent stem cells and further mechanistic investigations will not only shed new light on the biology of ESCs and iPSCs, but also help develop safe and efficient technologies to manipulate cell fate for regenerative medicine.
stem cells / miRNA / pluripotency / reprogramming
[1] |
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial−mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest119: 1438−1449
CrossRef
Google scholar
|
[2] |
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA
CrossRef
Google scholar
|
[3] |
Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev22: 2773−2785
CrossRef
Google scholar
|
[4] |
Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM
CrossRef
Google scholar
|
[5] |
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell136: 215−233
CrossRef
Google scholar
|
[6] |
Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P
CrossRef
Google scholar
|
[7] |
Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle1: 103−110
CrossRef
Google scholar
|
[8] |
Boxer LM, Dang CV (2001) Translocations involving c-myc and c-myc function. Oncogene20: 5595−5610
CrossRef
Google scholar
|
[9] |
Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet14: 427−439
CrossRef
Google scholar
|
[10] |
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep9: 582−589
CrossRef
Google scholar
|
[11] |
Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol28: 6426−6438
CrossRef
Google scholar
|
[12] |
Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature497: 244−248
CrossRef
Google scholar
|
[13] |
Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C
CrossRef
Google scholar
|
[14] |
Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol22: 3157−3173
CrossRef
Google scholar
|
[15] |
Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, Ward CM (2007) Epithelial−mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res67: 11254−11262
CrossRef
Google scholar
|
[16] |
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ
CrossRef
Google scholar
|
[17] |
Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res19: 92−105
CrossRef
Google scholar
|
[18] |
Fussner E, Djuric U, Strauss M, Hotta A, Perez-Iratxeta C, Lanner F, Dilworth FJ, Ellis J, Bazett-Jones DP (2011) Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J30: 1778−1789
CrossRef
Google scholar
|
[19] |
Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Kyba M, Murphy KM (2011) Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells29: 764−776
CrossRef
Google scholar
|
[20] |
Gonzalo S, Jaco I, Fraga MF, ChenT, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol8: 416−424
CrossRef
Google scholar
|
[21] |
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol10: 593−601
CrossRef
Google scholar
|
[22] |
Guo X, Liu Q, Wang G, Zhu S, Gao L, Hong W, Chen Y, Wu M, Liu H, Jiang C
CrossRef
Google scholar
|
[23] |
Hanina SA, Mifsud W, Down TA, Hayashi K, O'Carroll D, Lao K, Miska EA, Surani MA (2010) Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet6: e1001163
CrossRef
Google scholar
|
[24] |
Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell143: 508−525
CrossRef
Google scholar
|
[25] |
Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell153: 654−665
CrossRef
Google scholar
|
[26] |
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell138: 696−708
CrossRef
Google scholar
|
[27] |
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell151: 521−532
CrossRef
Google scholar
|
[28] |
Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development136: 509−523
CrossRef
Google scholar
|
[29] |
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53−p21 pathway. Nature460: 1132−1135
CrossRef
Google scholar
|
[30] |
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K
CrossRef
Google scholar
|
[31] |
Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cellspecific MicroRNAs. Dev Cell5: 351−358
CrossRef
Google scholar
|
[32] |
Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC (2013) MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells31: 259−268
CrossRef
Google scholar
|
[33] |
Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet46: 651−675
CrossRef
Google scholar
|
[34] |
Ip J, Canham P, Choo KH, Inaba Y, Jacobs SA, Kalitsis P, Mattiske DM, Ng J, Saffery R, Wong NC
CrossRef
Google scholar
|
[35] |
Irvine RA, Lin IG, Hsieh CL (2002) DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol22: 6689−6696
CrossRef
Google scholar
|
[36] |
Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC (2012) p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol10: e1001268
CrossRef
Google scholar
|
[37] |
Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol27: 459−461
CrossRef
Google scholar
|
[38] |
Judson RL, Greve TS, Parchem RJ, Blelloch R (2013) MicroRNAbased discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol20: 1227−1235
CrossRef
Google scholar
|
[39] |
Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest119: 1417−1419
CrossRef
Google scholar
|
[40] |
Kalluri R, Weinberg RA (2009) The basics of epithelial−mesenchymal transition. J Clin Invest119: 1420−1428
CrossRef
Google scholar
|
[41] |
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev19: 489−501
CrossRef
Google scholar
|
[42] |
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisúa Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature460: 1140−1144
CrossRef
Google scholar
|
[43] |
Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R
CrossRef
Google scholar
|
[44] |
Kim VN, Han J, Siomi MC (2009b) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol10: 126−139
CrossRef
Google scholar
|
[45] |
Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial−mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem283: 14910−14914
CrossRef
Google scholar
|
[46] |
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res39: D152−D157
CrossRef
Google scholar
|
[47] |
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M
CrossRef
Google scholar
|
[48] |
Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, Broxmeyer HE (2013) Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells31: 666−681
CrossRef
Google scholar
|
[49] |
Legesse-Miller A, Elemento O, Pfau SJ, Forman JJ, Tavazoie S, Coller HA (2009) let-7 Overexpression leads to an increased fraction of cells in G2/M, direct down-regulation of Cdc34, and stabilization of Wee1 kinase in primary fibroblasts. J Biol Chem284: 6605−6609
CrossRef
Google scholar
|
[50] |
Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol18: 237−244
CrossRef
Google scholar
|
[51] |
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120: 15−20
CrossRef
Google scholar
|
[52] |
Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature460: 1136−1139
CrossRef
Google scholar
|
[53] |
Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q
CrossRef
Google scholar
|
[54] |
Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation.EMBO J30: 823−834
CrossRef
Google scholar
|
[55] |
Liang G, He J, Zhang Y (2012) Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol14: 457−466
CrossRef
Google scholar
|
[56] |
Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, Xue Y, Cai J, Guo X, Qin B
CrossRef
Google scholar
|
[57] |
Lin B, Williams-Skipp C, Tao Y, Schleicher MS, Cano LL, Duke RC, Scheinman RI (1999) NF-kappaB functions as both a proapoptotic and antiapoptotic regulatory factor within a single cell type. Cell Death Differ6: 570−582
CrossRef
Google scholar
|
[58] |
Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Mycregulated microRNAs attenuate embryonic stem cell differentiation. EMBO J28: 3157−3170
CrossRef
Google scholar
|
[59] |
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R
CrossRef
Google scholar
|
[60] |
Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature460: 1149−1153
CrossRef
Google scholar
|
[61] |
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J
CrossRef
Google scholar
|
[62] |
Martínez-Estrada OM, Lettice LA, Essafi A, Guadix JA, Slight J, Velecela V, Hall E, Reichmann J, Devenney PS, Hohenstein P
CrossRef
Google scholar
|
[63] |
Massagué J (2012) TGF β signalling in context. Nat Rev Mol Cell Biol13: 616−630
CrossRef
Google scholar
|
[64] |
Melton C, Blelloch R (2010) MicroRNA regulation of embryonic stem cell self-renewal and differentiation. Adv Exp Med Biol695: 105−117
CrossRef
Google scholar
|
[65] |
Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature463: 621−626
CrossRef
Google scholar
|
[66] |
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet3: e215
CrossRef
Google scholar
|
[67] |
Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F
CrossRef
Google scholar
|
[68] |
Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA102: 12135−12140
CrossRef
Google scholar
|
[69] |
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev21: 682−693
CrossRef
Google scholar
|
[70] |
Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA14: 1539−1549
CrossRef
Google scholar
|
[71] |
Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol13: 490−496
CrossRef
Google scholar
|
[72] |
NIH (2009) Stem cell basics. In: In stem cell information. National Institutes of Health, U.S. Department of Health and Human Services, Bethesda.
|
[73] |
Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci366: 2198−2207
CrossRef
Google scholar
|
[74] |
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K
CrossRef
Google scholar
|
[75] |
O'Loghlen A, Muñoz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P, Lavial F
CrossRef
Google scholar
|
[76] |
Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB
CrossRef
Google scholar
|
[77] |
Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev22: 894−907
CrossRef
Google scholar
|
[78] |
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P
CrossRef
Google scholar
|
[79] |
Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell155: 135−147
CrossRef
Google scholar
|
[80] |
Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S, Zhou W, Stadler BM, Bourgin D, Wang L
CrossRef
Google scholar
|
[81] |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403: 901−906
CrossRef
Google scholar
|
[82] |
Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell7: 64−77
CrossRef
Google scholar
|
[83] |
Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene12: 309−322
|
[84] |
Schratt G, Weinhold B, Lundberg AS, Schuck S, Berger J, Schwarz H, Weinberg RA, Rüther U, Nordheim A (2001) Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells. Mol Cell Biol21: 2933−2943
CrossRef
Google scholar
|
[85] |
Sengupta S, Nie J, Wagner RJ, Yang C, Stewart R, Thomson JA (2009) MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells27: 1524−1528
CrossRef
Google scholar
|
[86] |
Sharma A, Diecke S, Zhang WY, Lan F, He C, Mordwinkin NM, Chua KF, Wu JC (2013) The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem288: 18439−18447
CrossRef
Google scholar
|
[87] |
Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol15: 259−267
CrossRef
Google scholar
|
[88] |
Spencer HL, Eastham AM, Merry CL, Southgate TD, Perez-Campo F, Soncin F, Ritson S, Kemler R, Stern PL, Ward CM (2007) E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol Biol Cell18: 2838−2851
CrossRef
Google scholar
|
[89] |
Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene21: 8320−8333
CrossRef
Google scholar
|
[90] |
Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol29: 443−448
CrossRef
Google scholar
|
[91] |
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126: 663−676
CrossRef
Google scholar
|
[92] |
Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008a) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455: 1124−1128
CrossRef
Google scholar
|
[93] |
Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ
CrossRef
Google scholar
|
[94] |
Thornton JE, Chang HM, Piskounova E, Gregory RI (2012) Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA18: 1875−1885
CrossRef
Google scholar
|
[95] |
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature460: 1145−1148
CrossRef
Google scholar
|
[96] |
Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science318: 1931−1934
CrossRef
Google scholar
|
[97] |
Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science320: 97−100
CrossRef
Google scholar
|
[98] |
Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res69: 4093−4096
CrossRef
Google scholar
|
[99] |
Wang Y, Blelloch R (2011) Cell cycle regulation by microRNAs in stem cells. Results Probl Cell Differ53: 459−472
CrossRef
Google scholar
|
[100] |
Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet39: 380−385
CrossRef
Google scholar
|
[101] |
Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet40: 1478−1483
CrossRef
Google scholar
|
[102] |
Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G
CrossRef
Google scholar
|
[103] |
Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C, Gao L, Ye D, Zhou Y, Chen J
CrossRef
Google scholar
|
[104] |
Wang Y, Melton C, Li YP, Shenoy A, Zhang XX, Subramanyam D, Blelloch R (2013b) miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms. Cell Rep4: 99−109
CrossRef
Google scholar
|
[105] |
Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A
CrossRef
Google scholar
|
[106] |
Watanabe A, Yamada Y, Yamanaka S (2013) Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci368: 20120292
CrossRef
Google scholar
|
[107] |
White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev1: 131−138
CrossRef
Google scholar
|
[108] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell153: 307−319
CrossRef
Google scholar
|
[109] |
Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol11: 228−234
CrossRef
Google scholar
|
[110] |
Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM
CrossRef
Google scholar
|
[111] |
Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell137: 647−658
CrossRef
Google scholar
|
[112] |
Yang CS, Li Z, Rana TM (2011) microRNAs modulate iPS cell generation. RNA17: 1451−1460
CrossRef
Google scholar
|
[113] |
Ye D, Wang G, Liu Y, Huang W, Wu M, Zhu S, Jia W, Deng AM, Liu H, Kang J (2012) MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells30: 1645−1654
CrossRef
Google scholar
|
[114] |
Zeisberg M, Neilson EG (2009) Biomarkers for epithelial−mesenchymal transitions. J Clin Invest119: 1429−1437
CrossRef
Google scholar
|
[115] |
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z
CrossRef
Google scholar
|
[116] |
Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y
CrossRef
Google scholar
|
[117] |
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG
CrossRef
Google scholar
|
/
〈 | 〉 |