Micro-management of pluripotent stem cells

Wen-Ting Guo, Xi-Wen Wang, Yangming Wang

PDF(367 KB)
PDF(367 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (1) : 36-47. DOI: 10.1007/s13238-013-0014-z
REVIEW
REVIEW

Micro-management of pluripotent stem cells

Author information +
History +

Abstract

Embryonic and induced pluripotent stem cells (ESCs and iPSCs) hold great promise for regenerative medicine. The therapeutic application of these cells requires an understanding of the molecular networks that regulate pluripotency, differentiation, and de-differentiation. Along with signaling pathways, transcription factors, and epigenetic regulators, microRNAs (miRNAs) are emerging as important regulators in the establishment and maintenance of pluripotency. These tiny RNAs control proliferation, survival, the cell cycle, and the pluripotency program of ESCs. In addition, they serve as barriers or factors to overcome barriers during the reprogramming process. Systematic screening for novel miRNAs that regulate the establishment and maintenance of pluripotent stem cells and further mechanistic investigations will not only shed new light on the biology of ESCs and iPSCs, but also help develop safe and efficient technologies to manipulate cell fate for regenerative medicine.

Keywords

stem cells / miRNA / pluripotency / reprogramming

Cite this article

Download citation ▾
Wen-Ting Guo, Xi-Wen Wang, Yangming Wang. Micro-management of pluripotent stem cells. Protein Cell, 2014, 5(1): 36‒47 https://doi.org/10.1007/s13238-013-0014-z

References

[1]
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial−mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest119: 1438−1449
CrossRef Google scholar
[2]
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell8: 376−388
CrossRef Google scholar
[3]
Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev22: 2773−2785
CrossRef Google scholar
[4]
Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells26: 2496−2505
CrossRef Google scholar
[5]
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell136: 215−233
CrossRef Google scholar
[6]
Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol15: 268−279
CrossRef Google scholar
[7]
Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle1: 103−110
CrossRef Google scholar
[8]
Boxer LM, Dang CV (2001) Translocations involving c-myc and c-myc function. Oncogene20: 5595−5610
CrossRef Google scholar
[9]
Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet14: 427−439
CrossRef Google scholar
[10]
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep9: 582−589
CrossRef Google scholar
[11]
Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol28: 6426−6438
CrossRef Google scholar
[12]
Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature497: 244−248
CrossRef Google scholar
[13]
Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol13: 1353−1360
CrossRef Google scholar
[14]
Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol22: 3157−3173
CrossRef Google scholar
[15]
Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, Ward CM (2007) Epithelial−mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res67: 11254−11262
CrossRef Google scholar
[16]
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell140: 652−665
CrossRef Google scholar
[17]
Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res19: 92−105
CrossRef Google scholar
[18]
Fussner E, Djuric U, Strauss M, Hotta A, Perez-Iratxeta C, Lanner F, Dilworth FJ, Ellis J, Bazett-Jones DP (2011) Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J30: 1778−1789
CrossRef Google scholar
[19]
Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Kyba M, Murphy KM (2011) Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells29: 764−776
CrossRef Google scholar
[20]
Gonzalo S, Jaco I, Fraga MF, ChenT, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol8: 416−424
CrossRef Google scholar
[21]
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol10: 593−601
CrossRef Google scholar
[22]
Guo X, Liu Q, Wang G, Zhu S, Gao L, Hong W, Chen Y, Wu M, Liu H, Jiang C (2013) microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Res23: 142−156
CrossRef Google scholar
[23]
Hanina SA, Mifsud W, Down TA, Hayashi K, O'Carroll D, Lao K, Miska EA, Surani MA (2010) Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet6: e1001163
CrossRef Google scholar
[24]
Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell143: 508−525
CrossRef Google scholar
[25]
Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell153: 654−665
CrossRef Google scholar
[26]
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell138: 696−708
CrossRef Google scholar
[27]
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell151: 521−532
CrossRef Google scholar
[28]
Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development136: 509−523
CrossRef Google scholar
[29]
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53−p21 pathway. Nature460: 1132−1135
CrossRef Google scholar
[30]
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science341: 651−654
CrossRef Google scholar
[31]
Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cellspecific MicroRNAs. Dev Cell5: 351−358
CrossRef Google scholar
[32]
Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC (2013) MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells31: 259−268
CrossRef Google scholar
[33]
Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet46: 651−675
CrossRef Google scholar
[34]
Ip J, Canham P, Choo KH, Inaba Y, Jacobs SA, Kalitsis P, Mattiske DM, Ng J, Saffery R, Wong NC (2012) Normal DNA methylation dynamics in DICER1-deficient mouse embryonic stem cells. PLoS Genet8: e1002919
CrossRef Google scholar
[35]
Irvine RA, Lin IG, Hsieh CL (2002) DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol22: 6689−6696
CrossRef Google scholar
[36]
Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC (2012) p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol10: e1001268
CrossRef Google scholar
[37]
Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol27: 459−461
CrossRef Google scholar
[38]
Judson RL, Greve TS, Parchem RJ, Blelloch R (2013) MicroRNAbased discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol20: 1227−1235
CrossRef Google scholar
[39]
Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest119: 1417−1419
CrossRef Google scholar
[40]
Kalluri R, Weinberg RA (2009) The basics of epithelial−mesenchymal transition. J Clin Invest119: 1420−1428
CrossRef Google scholar
[41]
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev19: 489−501
CrossRef Google scholar
[42]
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisúa Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature460: 1140−1144
CrossRef Google scholar
[43]
Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R (2009a) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4: 472−476
CrossRef Google scholar
[44]
Kim VN, Han J, Siomi MC (2009b) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol10: 126−139
CrossRef Google scholar
[45]
Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial−mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem283: 14910−14914
CrossRef Google scholar
[46]
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res39: D152−D157
CrossRef Google scholar
[47]
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell129: 1401−1414
CrossRef Google scholar
[48]
Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, Broxmeyer HE (2013) Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells31: 666−681
CrossRef Google scholar
[49]
Legesse-Miller A, Elemento O, Pfau SJ, Forman JJ, Tavazoie S, Coller HA (2009) let-7 Overexpression leads to an increased fraction of cells in G2/M, direct down-regulation of Cdc34, and stabilization of Wee1 kinase in primary fibroblasts. J Biol Chem284: 6605−6609
CrossRef Google scholar
[50]
Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol18: 237−244
CrossRef Google scholar
[51]
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120: 15−20
CrossRef Google scholar
[52]
Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature460: 1136−1139
CrossRef Google scholar
[53]
Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell7: 51−63
CrossRef Google scholar
[54]
Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation.EMBO J30: 823−834
CrossRef Google scholar
[55]
Liang G, He J, Zhang Y (2012) Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol14: 457−466
CrossRef Google scholar
[56]
Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, Xue Y, Cai J, Guo X, Qin B (2011) MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem286: 17359−17364
CrossRef Google scholar
[57]
Lin B, Williams-Skipp C, Tao Y, Schleicher MS, Cano LL, Duke RC, Scheinman RI (1999) NF-kappaB functions as both a proapoptotic and antiapoptotic regulatory factor within a single cell type. Cell Death Differ6: 570−582
CrossRef Google scholar
[58]
Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Mycregulated microRNAs attenuate embryonic stem cell differentiation. EMBO J28: 3157−3170
CrossRef Google scholar
[59]
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1: 55−70
CrossRef Google scholar
[60]
Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature460: 1149−1153
CrossRef Google scholar
[61]
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134: 521−533
CrossRef Google scholar
[62]
Martínez-Estrada OM, Lettice LA, Essafi A, Guadix JA, Slight J, Velecela V, Hall E, Reichmann J, Devenney PS, Hohenstein P (2010) Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet42: 89−93
CrossRef Google scholar
[63]
Massagué J (2012) TGF β signalling in context. Nat Rev Mol Cell Biol13: 616−630
CrossRef Google scholar
[64]
Melton C, Blelloch R (2010) MicroRNA regulation of embryonic stem cell self-renewal and differentiation. Adv Exp Med Biol695: 105−117
CrossRef Google scholar
[65]
Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature463: 621−626
CrossRef Google scholar
[66]
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet3: e215
CrossRef Google scholar
[67]
Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell8: 633−638
CrossRef Google scholar
[68]
Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA102: 12135−12140
CrossRef Google scholar
[69]
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev21: 682−693
CrossRef Google scholar
[70]
Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA14: 1539−1549
CrossRef Google scholar
[71]
Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol13: 490−496
CrossRef Google scholar
[72]
NIH (2009) Stem cell basics. In: In stem cell information. National Institutes of Health, U.S. Department of Health and Human Services, Bethesda.
[73]
Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci366: 2198−2207
CrossRef Google scholar
[74]
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods8: 409−412
CrossRef Google scholar
[75]
O'Loghlen A, Muñoz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P, Lavial F (2012) MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell10: 33−46
CrossRef Google scholar
[76]
Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB (2012) Chromatinmodifying enzymes as modulators of reprogramming. Nature483: 598−602
CrossRef Google scholar
[77]
Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev22: 894−907
CrossRef Google scholar
[78]
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature408: 86−89
CrossRef Google scholar
[79]
Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell155: 135−147
CrossRef Google scholar
[80]
Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S, Zhou W, Stadler BM, Bourgin D, Wang L (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle8: 3729−3741
CrossRef Google scholar
[81]
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403: 901−906
CrossRef Google scholar
[82]
Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell7: 64−77
CrossRef Google scholar
[83]
Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene12: 309−322
[84]
Schratt G, Weinhold B, Lundberg AS, Schuck S, Berger J, Schwarz H, Weinberg RA, Rüther U, Nordheim A (2001) Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells. Mol Cell Biol21: 2933−2943
CrossRef Google scholar
[85]
Sengupta S, Nie J, Wagner RJ, Yang C, Stewart R, Thomson JA (2009) MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells27: 1524−1528
CrossRef Google scholar
[86]
Sharma A, Diecke S, Zhang WY, Lan F, He C, Mordwinkin NM, Chua KF, Wu JC (2013) The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem288: 18439−18447
CrossRef Google scholar
[87]
Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol15: 259−267
CrossRef Google scholar
[88]
Spencer HL, Eastham AM, Merry CL, Southgate TD, Perez-Campo F, Soncin F, Ritson S, Kemler R, Stern PL, Ward CM (2007) E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol Biol Cell18: 2838−2851
CrossRef Google scholar
[89]
Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene21: 8320−8333
CrossRef Google scholar
[90]
Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol29: 443−448
CrossRef Google scholar
[91]
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126: 663−676
CrossRef Google scholar
[92]
Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008a) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455: 1124−1128
CrossRef Google scholar
[93]
Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ (2008b) MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells26: 17−29
CrossRef Google scholar
[94]
Thornton JE, Chang HM, Piskounova E, Gregory RI (2012) Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA18: 1875−1885
CrossRef Google scholar
[95]
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature460: 1145−1148
CrossRef Google scholar
[96]
Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science318: 1931−1934
CrossRef Google scholar
[97]
Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science320: 97−100
CrossRef Google scholar
[98]
Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res69: 4093−4096
CrossRef Google scholar
[99]
Wang Y, Blelloch R (2011) Cell cycle regulation by microRNAs in stem cells. Results Probl Cell Differ53: 459−472
CrossRef Google scholar
[100]
Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet39: 380−385
CrossRef Google scholar
[101]
Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet40: 1478−1483
CrossRef Google scholar
[102]
Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-Cdependent manner. Cell Stem Cell9: 575−587
CrossRef Google scholar
[103]
Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C, Gao L, Ye D, Zhou Y, Chen J (2013a) Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci USA110: 2858−2863
CrossRef Google scholar
[104]
Wang Y, Melton C, Li YP, Shenoy A, Zhang XX, Subramanyam D, Blelloch R (2013b) miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms. Cell Rep4: 99−109
CrossRef Google scholar
[105]
Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell7: 618−630
CrossRef Google scholar
[106]
Watanabe A, Yamada Y, Yamanaka S (2013) Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci368: 20120292
CrossRef Google scholar
[107]
White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev1: 131−138
CrossRef Google scholar
[108]
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell153: 307−319
CrossRef Google scholar
[109]
Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol11: 228−234
CrossRef Google scholar
[110]
Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM (2012) The Rnase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem287: 25173−25190
CrossRef Google scholar
[111]
Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell137: 647−658
CrossRef Google scholar
[112]
Yang CS, Li Z, Rana TM (2011) microRNAs modulate iPS cell generation. RNA17: 1451−1460
CrossRef Google scholar
[113]
Ye D, Wang G, Liu Y, Huang W, Wu M, Zhu S, Jia W, Deng AM, Liu H, Kang J (2012) MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells30: 1645−1654
CrossRef Google scholar
[114]
Zeisberg M, Neilson EG (2009) Biomarkers for epithelial−mesenchymal transitions. J Clin Invest119: 1429−1437
CrossRef Google scholar
[115]
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell3: 475−479
CrossRef Google scholar
[116]
Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4: 381−384
CrossRef Google scholar
[117]
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell147: 81−94
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(367 KB)

Accesses

Citations

Detail

Sections
Recommended

/